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Abstract

Over the last century, the quest to formulate physics to account for Reality has attracted
a large number of theoreticians to propose various models that have tended toward a growing
level of abstractness. While space and time have been largely recognized as the four fundamental
dimensions that make our perceived reality, their completeness has been challenged either by
positing hidden dimensions, or by exploring the possibility that spacetime itself is an emergent
property of a more fundamental physical structure.

One quantity that has not entered this exploration is frequency�a measure of how often some-
thing repeats. Although it is featured in numerous physical contexts, it is normally implied that
it is a mere parameter that is determined by the boundary conditions, or that it contains the same
information as the time, period, wavelength, or energy�all supporting the notion that frequency
is fully dependent on the other dimensions. In contrast, in psychophysics of vision, hearing, and
touch, frequency is a quantity that appears independent, so that both its input and output are
not directly dependent on the perception of space and time. Additionally, many important engi-
neering applications treat frequency as a variable rather than as a parameter that is constrained
alongside time.

This work explores the various conventions with respect to frequency in the physical, mathemat-
ical, and engineering literatures. It further scrutinizes frequency against the standard dimensions
of space and time along nine properties that may be deemed universal. While a case for frequency
being its own dimension can be made in di�erent situations, a more general theorem is proven
that states that only one of these three propositions can be simultaneously true:

1. Time is not a fundamental, obligatory dimension of Reality.

2. The universe is fully deterministic with total knowledge of past and future.

3. Frequency is a fundamental dimension of Reality.

The validity of this counterintuitive theorem is demonstrated using examples of epistemological
nature with growing complexity and diminishing generality, which deal with problems of tra�c
�ow, acoustic measurements, radio transmission, and psycholinguistics. It is proposed that if
the incompatibility of the three propositions (or modes) is encountered within the analysis of
any one system, there may be a discontinuity associated with the transition between modes.
This is explored within the measurement problem and nonlocality of quantum mechanics, where
it is suggested that these strange quantum e�ects may both be corollaries of the discontinuity
between the modes of Reality. It is further proposed that the frequency dimension, should it exist,
is nonlocal in some conditions and may have an ontological role within Reality, being neither in
space nor in time. Dwelling on the interrelationship between determinism, time, and frequency,
further metaphysical corollaries are explored in the appendices, including an emergent solution
for the problem of foreknowledge, and by association, of the paradox of free will.

*A previous preprint version of this work appeared with the title �Frequency as a �fth dimension of reality.�
�weisser@f-m.fm
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4 Motivation and structure

�Now, what about induction? I referred to the fact that its premises rest on this notion of
temporal invariance, which seems to be true only for the grossest of phenomena. Science has
made great hay in that dimension, by creating laws which are essentially predictive laws of
cyclical phenomena that de�ne for us what part of reality goes around and comes around.�

(McKenna, 1989)

1 Motivation and structure

Humans access the external reality through their senses, which function as arrays of detectors of
various physical attributes of stimuli from the environment. Once the stimuli are peripherally
detected, they are transduced to neural signals that can be perceived by the brain according to the
speci�c stimulus within its modality (i.e., its corresponding sense, such as vision or hearing). The
e�ects and implications of this indirect mediation of the external world on the resultant internally
perceived reality have been under ongoing exploration over millennia within philosophy and science.

Of late, physics has been informally nominated as the branch of science that deals with the
external Reality most rigorously and authoritatively, whereas perception and its internal reality has
been variably dealt with within philosophy, psychology, biology, and neuroscience1. The interface
between these domains is most directly addressed by psychophysics, itself a multidisciplinary science
that does not claim to explain perception. Of these disciplines, physics has been most concerned
with getting the closest to a true account of Reality that is unbiased by the particular layout and
wiring of our senses.

As a major part of this exploration, a recurrent question has been whether the world geometry
that is perceived as three dimensions of space plus one dimension of time is, in fact, nothing but a
product of our perception. The alternative is that Reality is spanned by a di�erent combination of
dimensions, whose nature we may not be able to directly perceive or even conceive.

In its rush to uncover hidden dimensions of Reality, the physics foray has provided exciting ideas
that challenge all naive perception of Reality, but may have neglected a more mundane contribution
from psychophysics that repeatedly highlights the independence of frequency in sensation. This
negligence is compounded by a tradition within physics of treating frequency as a de-facto parameter,
in contrast with more applied �elds where it is treated as a de-facto variable.

The present work sets to resolve the inconsistencies in the current science between various usages
of frequency. While traditionally understood as a measure for how often a periodic phenomenon
repeats, its present utility goes far beyond simple periodicity, to the point where the original meaning
may be wanting in explaining its reach.

1.1 Outline

The logic of the text is as follows. It begins with a brief overview of the sensory and perceptual
instantiation of the four accepted dimensions of Reality and contrasts them with that of frequency�
generally a separate perceptual dimension that is perceived as many things that are not experienced
as �how often� once they make it to consciousness (�2.1). A rough summary of the status of the
four accepted dimensions and additional hypothetical ones in physics follows and a proposal that
frequency may belong there is thrown in (�2.2).

The text continues through a semi-technical review of how the concept of frequency has evolved
in physics, mathematics, signal analysis, and engineering ever since its original de�nition as the
reciprocal of the period appeared some 400 years ago (�3). Although it has not been presented in
this way before, the basic elements of the material in this section should be familiar to many in the
physics, mathematics, and engineering disciplines and is the bread and butter of countless others. As
the degree of complexity of the systems studied increases, it is shown how the frequency concept has
drifted away from its restricted original use, and has become much more sophisticated and rich, but
also problematic in some cases. The latter subsections in this technical review emphasize paradoxes
and limitations of the frequency concept and contrast them with the original, static de�nition of

1In the following, external Reality, should it exist, is capitalized, whereas its image�the observed, sensed, perceived, or
subjectively experienced reality�is lowercase. However, the distinction between the two is not always going to be clear cut. This
nomenclature may serve to acknowledge the Kantian notion of a thing-in-itself, which, although controversial, is unavoidable when
mixing physical and psychophysical points of view: �...[T]hings as objects of our senses existing outside us are given, but we know
nothing of what they may be in themselves, knowing only their appearances, i.e., the representations which they cause in us by
a�ecting our senses.� (Kant, 1783 / 2001, �13, Remark II).
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frequency. The conclusion of this review is that the standard de�nition of frequency as a parameter
does not capture its realistic and logical use in many practical cases. A more universal de�nition for
frequency is o�ered (De�nition 1).

Section �4 attempts to distill universal properties of the physical and perceptual dimensions of
space and time. Frequency is contrasted with each property and its hypothetical elevation to the level
of dimension is considered. The synthesis of these ideas results in the theorem that appeared also in
the abstract, which entails that only one out of three possible modes of Reality holds at any given
moment (�5). The epistemological validity of the theorem is initially illustrated using four examples:
a toy model of road tra�c, bioacoustic �eld measurements, radio communication channel design, and
psycholinguistic homonym processing models (�6). It is seen that separating the three modes of Re-
ality in real-world cases is often messy. It is further hypothesized that switching between modes may
lead to a discontinuity of an unknown nature. These ideas are examined in two separate ontological
examples from quantum mechanics. In the measurement problem, the deterministic�probabilistic
incompatibility between the pre-measurement and post-measurement quantum states has been a
famous conceptual stumbling block in its interpretation. It is argued in �7 that this incompatibility
may be inevitable. The second example relates to quantum entanglement and nonlocality�a bizarre
and yet well-established physical phenomenon�only to be repeatedly challenged as stemming from
an unrealistic and nonphysical interpretation of the results and the formalism. Here, the idea of
nonlocality is embraced as an inherent feature of the frequency dimension, which is suggested to
give rise to �ve-dimensional objects, under entanglement (�8).

Challenges to the premise of the main ideas of the paper, as well as several other topics and
connections to other topics, are discussed in �9 and brie�y concluded in �10.

Finally, in the �rst appendix (�A), there is a separate treatment of the version of determinism
that is used in this work, which is tied to the existence of the Fourier integral. The last appendix
on metaphysics provides several alternative formulations to the theorem, from which a solution to
the foreknowledge and free-will paradox appears to emerge (�B).

1.2 About the text

This text is written in academic language and uses jargon(s) that may be di�cult in parts to parse
for some readers, because of the multitude of disciplines that are blended in. Where applicable,
I attempted to provide brief de�nitions, references, explanations, and illustrations that clarify the
concepts for readers that are not directly acquainted with this or that discipline. Several subtler
de�nitions, historical notes, and terminological comments have been con�ned to in-page footnotes,
which would have been more disruptive to the reading �ow had they been incorporated in the main
text, but may still hold valuable information (notably, Footnotes 1, 11, and 12).

Overall, this is by no means an introductory-level text nor a complete review of any of the topics
touched upon. A portion of this work assorts a large number of equations and formulas that would
be familiar to the majority of readers in the natural sciences and engineering, but may be quite
impenetrable to many others. For the most part, these equations are presented without derivation,
while no new expressions are introduced that do not appear elsewhere. The formulas serve as anchors
to abstract concepts that are in prevalent use in the sciences and mathematics, whose meaning and
logic transcends the equations themselves. That said, I am positive that it can nevertheless be
intimidating for the less mathematically-inclined readers, whom I therefore encourage to read around
the equations, focus on the logic, and try to gather the main points from the illustrations and interim
discussions. All this holds also for the choice of examples throughout the second half of this work,
which may appear arcane and technical, depending on the particular expertise of the reader. In this
sense and others this work cannot be readily classi�ed into any one particular discipline, although it
weighs strongly to physics, philosophy, perception, psychophysics, neuroscience, engineering, signal
processing, statistics, harmonic analysis, and ultimately, metaphysics.

A �nal remark would be in place about the philosophy of this work that brings together what
appears that should belong to either psychophysics or physics. If the distinction between the two
appears to be blurred, it is because it indeed tends to be blurred. The approach taken here is
reminiscent of John von Neumann's version of �the principle of psycho-physical parallelism�, which
he invoked in his interpretation of quantum mechanics (von Neumann, 1932 / 2018, p. 272): �...it
must be possible so to describe the extra-physical process of subjective perception as if it were in the
reality of the physical world; i.e., to assign to its parts equivalent physical processes in the objective
environment, in ordinary space.� Hence, until the point of conscious perception itself begins�a
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rather vague thing that is not clearly localizable to any one point or area in the brain and may not
be amenable to our analytical treatment�any intermediary physical process, including all biological
signal transmission whose exact nature we may not fully understand, must still follow all otherwise-
universal laws of signals, waves, statistics, communication, or any other analytical frameworks that
are regularly employed outside of the biological machinery.

2 Introduction

2.1 Geometrical and temporal detection in sensation and perception

The starting point for any discussion about reality is our sensory apparatus and the ensuing per-
ception, which mediate all observations of the external world. The di�erent senses tend to provide
complementary detection of di�erent body parts, so that every part is covered by at least one or
two senses (Fig. 1). Several senses are particularly well-equipped to deal with remote stimuli that
are external to the body and are carried by radiation (hearing, vision, heat, magnetoreception) or
by changes in concentration of certain chemical compounds (olfaction).

The geometrical arrangement and relevance of the senses are also found within the brain. The
brain contains topographical map representations that re�ect the peripheral structure of several
senses, such as somatopy in touch that maps the skin (Pen�eld and Boldrey, 1937; Flanders, 2005),
retinotopy in vision that corresponds to the optical image on the retina (Fishman, 1997; Wandell
et al., 2007), tonotopy in hearing that corresponds to cochlear place (Pickles, 2012; Triarhou and
Verina, 2016; Ruben, 2020), and an odor map that corresponds to primitive dimensions of olfaction
(Lee et al., 2023). While these maps tend to be distorted at the cortical level (Flanders, 2005), they
provide a perceptual gateway for mapping of the environment, inasmuch as its geometry is causally
re�ected in the peripheral sensory response (Uchimura et al., 2024). With additional processing of
the neural signal, as well as with cross-modal binding of the sensory information that is processed as
belonging to the same object (Roskies, 1999), the various senses provide information to the perceiver
about his/her own position and how he/she is localized with respect to various objects within the
environment (e.g. Lackner and DiZio, 2005). Bound spatial perception also includes information
about the orientation of the perceiver's own body and possible interactions with external objects
(Fig. 1, left). The integrated information about the world from the senses is positioned in a three-
dimensional (3D) perceptual geometry that includes the sensing individual, who occupies part of
that 3D space and serves as an internal reference.

In addition to the spatial information that is provided by the senses, information regarding
temporal changes in the sensory stimuli can also be extracted from the detected signals, which
can in turn be used to produce the time perception of the individual within the cortex (Allman
et al., 2014). However, while di�erent senses have di�erent temporal precision associated with their
stimulus duration judgments, time perception is not associated with a speci�c modality and is not
anchored to a dedicated sense organ (Grondin, 2010; Allman et al., 2014). Hence, time perception
may be thought of as a supra-modal sense that is central to the entire perceptual system (Fig. 1,
middle).

Despite the di�culty in understanding how perception manipulates or reduces the high math-
ematical dimensionality of natural stimuli (e.g., Shepard, 1994; Au�arth, 2013; Welchman, 2016;
McAdams, 2019; and somewhat indirectly, Chen et al., 2022), all percepts that originate in the
sensory apparatus correspond to certain physical properties of the stimulus and its environment
that may not be encapsulated solely in spatial and temporal information2. As such, perhaps the
most common additional attribute of stimuli in several modalities is their frequency content, or
their (power) spectrum. In humans, vision (Mollon, 2003), hearing (Fletcher, 1940), touch (Talbot
et al., 1968; Johansson et al., 1982; Bolanowski Jr et al., 1988), and balance (Todd et al., 2008) all
produce perceptions that are causally linked to the stimulus frequency, which is detected by appro-
priately tuned sensory receptors3. In some cases, the receptor tuning has been explicitly analogized
to frequency channels that are locally demodulated to obtain baseband (i.e., low-frequency) signals

2For simplicity, we omit from the discussion certain stimuli that are arti�cially generated and, in some cases, can be designed to
�fool� the ecologically evolved correspondence to natural stimuli (e.g., using video displays or loudspeakers), so that their perception
rarely corresponds to objects encountered in the natural environment.

3According to an interesting hypothesis, olfaction too may generate di�erentiated sensations of odorants determined by their
vibrational spectra, which in molecular (Raman) spectroscopy are known to be unique in a particular infrared �ngerprint region
(Malcolm Dyson, 1938; Wright, 1977; Turin, 1996). However, under psychophysical and physiological scrutiny, this hypothesis has
so far failed to receive experimental support (Keller and Vosshall, 2004; Block et al., 2015).
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Figure 1: The sensory mapping of the physical environment is delegated to the di�erent senses that
are located in strategic places in the body, which are suitable to detect either direct-contact or remote
stimuli. Most body parts are covered by at least one sense (e.g,. touch, chemesthesis, or interoception)
with key areas that interface the environment covered by more than one sense. (Original illustration by
Jody Ghani.)

that vary slowly in time and space, at rates that can be directly coded by neuronal spiking (e.g.,
Rhodes, 1953; Weisser, 2021, pp. 122�123). While di�erent peripheral channels can interact and
be segregated or fused in perception, they are understood as providing information that may not
be available in the stimulus spatial and temporal attributes alone, as can be gathered, for example,
from the e�ects of color on object recognition (Wurm et al., 1993)4, or speech recognition when some
parts of the spectrum are �ltered out (French and Steinberg, 1947; Kasturi et al., 2002). Thus, many
of these percepts are experienced as something (qualia) that does not seem to directly correspond
to the question of �How often� that is technically associated with the concept of frequency. Rather,
the spectral or spectral-equivalent perceptual representation of the stimulus provides a �What� kind
of information about the physical object that generates the stimulus5, which is arguably mandatory
in all senses that rely on physical waves from the environment6.

It therefore appears plausible that the perceptual experience of the external reality has to include,
at the very least, �ve dimensions (5D) with frequency, spectrum, or channel(s) being the extra �fth
dimension on top of the usual 4D space and time.

2.2 Dimensions of Reality within physics

While space has always played an obvious role in physics, the inclusion of time in the standard dimen-
sional count is a relatively recent development that was realized only with the advent of Einstein's
special theory of relativity. In fact, both D'Alembert and Lagrange had already proposed that time
should count as a fourth dimension, a century and a half before Minkowski formalized the concept
of spacetime (Minkowski, 1908; Cajori, 1926). And while the very intangible nature of time is in

4Note that even in monochromatic vision as is achieved by the rod (�black and white�) photoreceptors as is common in some
animals, vision is still spectrally tuned, only to less narrow frequency channels than the cone (color) photoreceptors.

5The distinction between �Where� and �What� types of processing has been suggested as a fundamental organizing principle
of the brain in vision, known as the dual stream model (Trevarthen, 1968; Schneider, 1969). This model was later expanded for
hearing as well. See (Weisser, 2021, p. 40) for further references.

6Spectral band-limitation is well-ingrained in modern sensation and perception science, and yet frequency analysis as a general
property of sensory channels has not been generalized beyond the speci�c modalities and no general reviews are available within
the sensation and perception literature, to the best of my knowledge.
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itself opaque, its inclusion as a an inseparable aspect of space has conceptually opened the door for
even wilder theoretical proposals of additional dimensions of Reality that go beyond the perceptually
observable space. These have provided attractive avenues in the attempts to unify relativity, elec-
tromagnetic, and quantum theories (beginning from Nordström, 1914; Kaluza, 1921; Klein, 1926; for
more recent references see Gonzalez-Ayala et al., 2016). A highly in�uential conjecture has been the
anti de-Sitter / conformal �eld theory (AdS/CFT) correspondence, which relates a �ve-dimensional
gravitational theory to a four-dimensional quantum �eld theory without gravity, showing how all
the information in the volume of the former can be projected onto a four-dimensional surface of the
latter, all being part of a ten- or higher-dimensional universe (Maldacena, 1999). However, the AdS
space assumes a negative scalar curvature, which requires a negative cosmological constant, whereas
the observed cosmological constant of the universe is positive, for which a de-Sitter space may rather
be appropriate.

Common to the various higher-dimensional theories has been the understanding that any such
extra dimensions ultimately have to be reducible to the measurable four dimensions that are acces-
sible to our senses (e.g., Green et al., 1987, p. 15). The extra dimensions in such theories are then
either mathematically constructed, or assumed to map to very small geometries that are curled and
topologically compact and are not amenable to observation using current measurement methods.
According to one theoretical analysis, spacetime that is speci�cally four dimensional has special
properties that enable life and physics as we know it (Tegmark, 1997). Additional mathematical
features that are unique to four-dimensional geometry can be considered particularly attractive in
physical modeling (Woit, 2022).

Insights from such physical theories of extra dimensions, along with the realization of how di�cult
it may be to formulate a consistent physical theory of extreme spatial and temporal scales, have
in�uenced some ideas regarding the validity of perception itself. In its most sensational form, it has
been hypothesized that the four-dimensional reality emerges on a macroscopic scale from a higher-
dimensional space that exists at scales that are too small to be measured�something that may
entail �doom� on the spacetime dimensional reality as we naively perceive it (Witten, 1996; Cole,
1999; Arkani-Hamed, 2014)7. In turn, this has led some scholars to suggest that perception may
deliver an image of Reality that is altogether divorced from the �actual� Reality and is only geared
to satisfy the evolutionary needs of the organism (Ho�man et al., 2015; cf. Footnote 1).

2.3 The absence of frequency from the physical dimensional count

In the quest to account for both observable and hidden physical dimensions, the essential frequency
variable of key sensory systems (�2.1) has been left out of all discussions within the physics and
philosophy literatures, perhaps with the exception of a mention in an overlooked proposal by Wiener
and Struik (1928).

Why is it that the 4D spacetime has become the de-facto standard in physical representation
without considering frequency as an extra dimension? While it is only possible to speculate here, at
least three explanations come to mind. First, all physicists are trained in Fourier analysis�mainly
in the context of solving partial di�erential equations. In the modern presentation of this technique,
time and frequency appear as reciprocal domains that essentially contain the same information
about the system (e.g., Sommerfeld, 1949, p. 21), which suggests that including frequency as a
dimension would be super�uous, given that it is completely dependent on time. Second, unlike
space, frequency does not refer to anything that is intuitively or immediately tangible�even less so
than time, which has already su�ered from this issue (Cajori, 1926). Third, frequency is a much
more modern concept than time. The concept of frequency was introduced (not by name) only in
1585 by Giovanni Battista Benedetti, picked up by Galileo Galilei, and re�ned over the subsequent
centuries (Dostrovsky, 1975)8. Filtering, which constitutes the most fundamental operation in the

7Historically, the sense of impending dimensional doom was originally spelled in the translation of Minkowski (1908, p. 75) at
the opening to his seminal lecture: �Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows,
and only a kind of union of the two will preserve an independent reality.� The original German text is only slightly less evocative:
�Von Stund an sollen Raum für sich und Zeit für sich völlig zu Schatten herabsinken [completely decaying into shadows] und nur
noch eine Art Union der beiden soll Selbständigkeit bewahren.� In the subsequent mention (p. 80, Ibid) the word �completely�
(�völlig�) is no longer there, so the translators stuck to �fade away into shadows.�

8In his analysis of the cause of simple consonances of musical intervals, Benedetti proposed that they occur when there is a
simple integer ratio between the numbers of vibrations (�percussions�; in Latin, �percu�ones�) of sound. In the example he gives,
the sound is produced by two parts of a string that is divided by a bridge, and are inversely proportional to the string part lengths
(Benedetti, 1585, p. 283). See partial translations from Latin in Palisca (1985, pp. 258�261), Palisca (1994, pp. 214�215), and
further discussion in Capecchi and Capecchi (2023).
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spectral domain that one can perform on a broadband time signal, is an even more recent concept
that was formally invented for electric circuits only a century ago by Campbell (1917)9. Nowadays,
�lters are ubiquitous and any electronic detector can be associated with a �lter that e�ectively limits
its applicable spectral range (either deliberately designed or imposed by parasitic elements in the
system), but the signal processing theory that facilitates this understanding is barely a century old
(Campbell, 1922)10. Signal processing theory had anyway matured well after the dominant physical
theories of the day had become established.

While these explanations may not fully capture the absence of frequency from the standard
dimensional discussion, they highlight the problems involved in attempting to �nd out whether
frequency may be, in fact, an independent variable and dimension of Reality.

2.4 The present exploration of frequency as a dimension

The present work outlook is motivated by the dimensions of Reality as are phenomenologically
perceived by our senses, rather than with hidden dimensions that the senses may or may not be
privy to. As such, it focuses on frequency as is conventionally conceptualized and materialized in
the sciences and challenges its current non-dimensional status. The conditions are explored as for
whether frequency is:

1. A parameter11.

2. A variable that carries the same information as time, may be derived from it, and as such,
equivalent to it.

3. An independent variable that may also vary in time.

4. A dimension of Reality that is distinct from both time and space.

Each option is categorically escalated compared to the previous. The relevance of options 1�3 can be
explored using deduction alone based on �rst principles. Section �3 deals with 1�3, by referring to
the quintessential appearances of frequency in physics, mathematics, and engineering. Option 4 that
entails that frequency, which is neither a parameter nor dependent only on time, can be considered its
own dimension is tested against several universal features of the standard space and time dimensions
in �4. The conditions for frequency becoming its own dimension are then synthesized into Theorem
1 in �5.

3 Evolved approaches to frequency

This section assorts essential and de�ning occurrences of frequency within physics, engineering, and
mathematics. As no new physics or mathematics is presented here, some readers may �nd certain
elements of this review to be overly basic. However, the novelty here is in the uncovering of an
otherwise subtextual narrative relating how the concept of frequency has evolved well beyond its
initial usage and original de�nition. It is shown how the di�erent de�nitions or usages of frequency
either contain additional supra-dimensional parameters (i.e., that are not temporal or spatial), or
they require an ultra-deterministic conception of Reality. As such, the �rst part of this narrative
serves as a survey of many of the familiar concepts in basic introductions to oscillatory phenomena,
but with emphasis on de�nitional intricacies, paradoxes, and contradictions that had not been previ-
ously all put together in writing. The latter part of the review (from �3.5) focuses on complementary
approaches to frequency within modern time�frequency analysis that may be less familiar to some
of the readers.

9Alexander Graham Bell (1875) described a mechanical method to separate transmissions of di�erent frequencies, which can
arguably count as a primitive approach to bandpass �ltering and would be then the �rst one in print.

10To the best of my knowledge, there is no rigorous historical account of early signal processing theory that preceded the
digital age (Oppenheim and Schafer, 2009, pp. 5�8). George Ashley Campbell (1922) wrote the �rst publication that formalized
�lter theory, following his very own patent of the �rst electrical �lter (Campbell, 1917), and as such seems to be an appropriate
cornerstone to designate the beginning of analog signal processing theory.

11In this context of frequency, a parameter is a �xed quantity of the system, which is distinct from a universal constant, and
distinct from a variable that is manifestly changing. This is di�erent from the idea of time as a parameter, which will be encountered
in two varieties later in the text. First, time in some dynamical systems is considered parametric if it does not explicitly appear
in the Hamiltonian or the dynamical di�erential equation (i.e., when the di�erential equation is autonomous). Second, parametric
time is often used only as a measure of duration�a �time ruler� of a sort�which is distinct from time itself.
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Frequency has been incorporated into two main modeling approaches to dynamical systems. The
historical one is wholly deterministic12. It provides analytical (closed-form) solutions and intuition
and has been traditionally used to introduce these topics in fundamental physics and engineering
courses. Its main results have been studied using di�erent families of di�erential equations and their
solutions have given rise to powerful analytical techniques that carried over to various implemen-
tations in both analog and digital signal processing. Similar results keep on appearing in di�erent
guises in modern physics and engineering, so the relevance of this perspective has not waned. The
second, statistical approach emerged more recently and is based on the analysis of signals whose
particular instantiation is either unknown, unknowable, or unimportant, whereas analysis of their
ensemble properties provides robust information. Ultimately, both the deterministic and the sta-
tistical approaches to frequency should account for the same physics, but they provide and rely on
di�erent types of intuition and information about the phenomena at hand.

As the physical and mathematical understanding of dynamical systems has become more so-
phisticated, so did the concept of frequency has been gradually expanded to include a wider array
of conditions that did not originally lend themselves to spectral (i.e., frequency) analysis (Fig. 2).
Beginning from oscillatory systems in complete equilibrium, frequency was incorporated in the de-
scription of systems with multiple modes of motion, in waves, in the description of lossy systems,
and in accounting for the e�ects of external forces. Then, a profound conceptual jump has been to
have frequency available for the description of aperiodic oscillations, nonlinear systems, and with
arbitrary forces driving the system, for which periodicity is, at best, local. In dealing with the latter
systems, it is impractical to speak of a time-independent frequency, although the classical de�ni-
tion of frequency that is time independent may be applied notwithstanding and may then lead to a
description that is mathematically correct, but is of little practical use.

Throughout this analysis we refer somewhat interchangeably to waves, signals, oscillations, vi-
brations, periodic and cyclic motions, disturbances, �elds, and stimuli. While these terms do not
mean the same thing, their mathematical formulation and usages within the sciences that pertain
to the present context is more similar than not. Thus, a �signal� here is taken as a general function
of time and frequency, whose spatial dependence is of secondary importance. The information that
the signal carries�its speci�c message�is immaterial, except for the fact that it can be seen as
meaningful for a conscious receiver, in certain situations. Without loss of generality, it should be
understood that the signal can take the form of an arbitrary waveform, time function, time series,
variable, measurement, stimulus, etc. This enables us to make freer use of generic mathematical
concepts developed within harmonic analysis or signal processing theory that may be universally
applicable.

3.1 Ideal oscillators: frequency as a parameter

3.1.1 The simple harmonic oscillator

The frequency f (also called rate) of a periodic motion is de�ned as the reciprocal of its period
T (also called cycle)�a �xed duration that characterizes the motion and provides the information
about how often it repeats

f =
1

T
(1)

12The adjective �deterministic� is used in this work in two related but subtly di�erent meanings, which are both common in
di�erent literatures, but may give rise to no small amount of confusion due to equivocation. In quantitative analysis, �deterministic�
(appearing in slanted font in the text) indicates that everything being modeled appears with certainty (probability equal to one).
If a deterministic system can be modeled, it strictly relies on physical laws that are mathematically expressible in closed-form
formulas (often based on di�erential equations), whose solutions should be precisely reproducible. Any statistical or probabilistic
aspect of these models is generally implicit and empirical, rather than inherent to the model. In contrast, �deterministic� (normal
font in the text) refers to the philosophical and metaphysical property of determinism�the quality of the remote past and future
being completely determined by the present state, given law-governed Reality (see the Laplacian de�nition of determinism in �A.1).
Despite their close relation, one usage of the word does not necessarily entail the other. Most importantly, we will argue that some
deterministic systems do not entail determinism (mainly in �A.2 and �7.2). The two meanings converge in the present text at
places where we utilize the existence of the Fourier spectrum as an indicator of determinism. In these cases, deterministic modeling
and determinism lead to something happening with probability equal to one, deterministically. The equivocation is all but gone in
the antonymous case: an indeterministic system and model entail indeterministic knowledge and, hence, Laplacian indeterminism
applies to it as well, locally.
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Figure 2: Visualization of the escalation of the concept of frequency with time signals of increasing com-
plexity. A. Frequency is a parameter that is calculated from the limited duration measurement of simple
periodic motion and is unde�ned outside of the observed interval. B. Frequency is a parameter, whose
instantiation implies constant (inertial) periodic motion in the remote past and future. C. Frequency
is an average of imperfect periods, either due to the measurement errors or due to instability in the
oscillation. The average, nevertheless, produces the same long-term periodic motion as the simple har-
monic oscillator. A di�erent way to relate to this waveform is to de�ne a time-dependent, instantaneous
frequency. D. When loss of energy (damping) is included, a strict de�nition of periodic motion would
emphasize that each period is slightly di�erent in amplitude than its neighbors, so periodicity is not met
here. Nevertheless, using a small correction, a constant frequency can still describe the oscillatory part
of the motion, separate from a damping term that takes care of the decreasing amplitude (Eq. 25.) E. A
periodic force of slower frequency than the oscillation drives the system, or modulates the signal in am-
plitude, further blurring the aspect of simple harmonic motion periodicity. F. Complex (non-sinusoidal)
signals that are still periodic can be modeled using a Fourier series decomposition of the waveform to a
sum of sinusoids whose frequencies are integer multiples (harmonics) of the fundamental frequency. As in
B, the periodicity is extended to the remote past and future. G. An extension of the Fourier-series period
to in�nity produces the Fourier transform, which allows for modeling of aperiodic signals that comprise a
continuum of sinusoids with parametric frequencies. H. Combining the slow variations in amplitude (E)
with the variations in frequency (C) gives rise to a so-called AM�FM signal, whose only constant may be
the average (center) frequency. I. A broadband signal can be decomposed to many narrowband AM�FM
signals of the form of H. This form produces complex waveforms that do not necessarily disclose a clear
periodicity, unless the components are separated using band-pass �ltering, or another form of frequency
tracking.

The frequency is measured in reciprocal time units s−1 or Hertz (Hz). Eq. 1 refers, for example, to
the period of an idealized small-amplitude mass�spring system that can be computed from

T = 2π

√
m

s
(2)

with m the mass and s the sti�ness of the spring�both of which can be estimated from static
mechanical measurements. Similar dynamics accounts for the small-angle periodic movement of the
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Figure 3: Three simple harmonic oscillators: mass�spring (left), pendulum (middle), inductor�capacitor
(LC) circuit (right). All three systems are described by the same ordinary di�erential equation (5), where
frequency is a parameter de�ned as the reciprocal of the period, which is itself determined by the various
constants of the system.

pendulum, where

T = 2π

√
g

l
(3)

with g being the gravity of Earth and l is the length of the pendulum rod. Another basic system�an
ideal LC (inductor�capacitor) circuit resonator has the period of

T = 2π
√
LC (4)

with L being the inductance and C the capacitance. The three systems, sketched in Fig. 3, are
examples of simple harmonic oscillators that are described by the same ordinary di�erential equation

d2x

dt2
+ ω2x = 0 (5)

where x is displacement in the mass�spring system, angle of the pendulum, or electric current in the
LC circuit, in our examples. The solution to the simple harmonic oscillator is then given by

x(t) = A cos(ωt− φ) (6)

where the angular frequency ω = 2πf conveniently expresses the frequency in units of phase (radians
per second). The amplitude A and the phase φ are parameters of motion determined by the initial
conditions on x and its �rst derivative dx/dt (e.g., the initial displacement and velocity, or current
and its �rst time derivative) at an arbitrary time t0 (see Fig. 4). The frequency is usually referred
to as the resonance of the system. Two more equivalent forms exist of the solution of Eq. 6�either
as a sum of a sine and a cosine

x(t) = a1 sin(ωt) + b1 cos(ωt) (7)

where a1 and b1 are real amplitudes, or alternatively,

x(t) = Re
[
c1e

−iωt
]

(8)

with c1 being a complex amplitude and i =
√
−1, taking for x(t), by convention, the real value of the

complex exponential13. The constants a1 and b1 or c1 are determined by the initial conditions. It
is worth noting that because Eq. 5 does not depend on time explicitly (technically, an autonomous
di�erential equation), it is invariant under translation in time�only the time elapsed t− t0 matters
between the time t0 at the initial condition and the present time t, rather than their absolute values
(Kloeden and Rasmussen, 2011).

The simple harmonic oscillation is plotted in Fig. 2 B. Despite its simplicity, ever since its
introduction by Euler (1750 / 2021), the harmonic oscillator model has provided the basis and
intuition for a large number of vibrational systems of all scales, ranging from the quantum to the
astronomical.

We note that the standard de�nition of frequency (Eq. 1) is inherently ambiguous with respect to
the time interval that it covers, as well as to whether it relates to a constant and time-independent
frequency or to an average value (Fig. 2 A�C). These issues will become important further in the
analysis.

13According to Euler's formula, eix = cosx + i sinx. The argument of the exponent in Eq. 8 appears with either a plus or a
minus sign in di�erent texts.
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Figure 4: The basic parameters of oscillatory motion. Left: An example for a solution of the form of
Eq. 6, with x = A cos(ωt), illustrating the period T = 1/f = 2π/ω and the amplitude x = A. Right: A
similar simple wave motion solution at t = 0, y = A sin(kx − φ), illustrating the wavelength λ = k/2π
(analogous to the period in spatial coordinates), and the initial phase φ, which in this case is negative.

Figure 5: Left: An example of a mass�spring system with three springs and two masses. Right:
Approximation of one-dimensional wave motion using identical mass�spring building-block model.

3.1.2 Coupled simple harmonic oscillators

Simple harmonic oscillators may be combined into more elaborate systems that contain multiple
masses and springs, capacitors and inductors, etc. (Fig. 5). Parts of the system are coupled to
the others, in a way that can be studied using systems of linear di�erential equations of the form
of Eq. 5 (e.g., Morse and Ingard, 1968; Goldstein et al., 2014). The resultant oscillatory system
can then be characterized by a set of resonances that contains as many frequencies as are degrees
of freedom in the system�its modes of vibration. These frequencies are functions of the individual
free-oscillating frequencies of the single simple harmonic oscillators. The total oscillation can be
described as a superposition of oscillations at the component frequencies, which also depends on the
particular initial conditions and parametric values of its building blocks. The set of all frequencies
along with their amplitudes and phases makes the frequency spectrum, or simply the spectrum, of
the system, which, in this case, is discrete.

3.1.3 Simple wave motion

In the limit of in�nitely many identical coupled oscillators (Figs. 5, right and 6, left), it is possible to
arrive at a description of continuous wave motion (e.g., of a string)�an oscillation that is periodic
in both space and time and has similar mathematical solutions to the harmonic oscillator (Morse
and Ingard, 1968, pp. 80�91). The simplest wave equation�the string equation�is

∂2y

∂t2
= c2

∂2y

∂x2
(9)

where the transverse motion in one spatial dimension (y), the string amplitude, depends on both
(the perpendicular) spatial dimension x and on the time dimension t (Fig. 6, right), with the wave
speed c. The wave frequency is related to its wavelength λ via

f =
c

λ
(10)

Hence, for a known c, the frequency contains the same information as the wavelength. The general
solution for the partial di�erential equation 9 is of the form

y(x, t) = g(x− ct) + h(x+ ct) (11)

with two functions in superposition, describing a forward propagating wave g(x− ct) and backward
propagating wave h(x + ct). The exact solution is then determined by the boundary conditions of
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Figure 6: A. Approximation of a string using identical mass�spring building blocks. B. A geometric
construction for the derivation of the string equation, using tension forces (with horizontal tension FT

in equilibrium and vertical tension producing the oscillation) in two dimensions (drawn after Morse and
Ingard, 1968, p. 98).

the string. For example, when it is of in�nite extent, the solution takes the form:

y(x, t) = A cos
[ω
c
(x− ct)− ϕ

]
(12)

with A and ϕ being the amplitude and phase of the forward-propagating wave (there is no backward
propagating wave), which depend on the initial conditions. As before, the solution can also be
expressed using

y(x, t) = Re
[
Be

iω
c (x−ct)

]
(13)

where the complex amplitude B now incorporates also the initial phase.
The string equation also describes other types of one-dimensional wave motion in arbitrary media

where the spatial frequency k (also called the wavenumber) is de�ned as

k =
2π

λ
(14)

which hints that the wavelength is analogous to the period, only in spatial dimensions (k is analogous
to ω = 2π/T ; see Fig. 4, right). The spatial and temporal frequencies are both related through the
velocity c

c =
ω

k
(15)

In all other media except for vacuum (in the case of electromagnetic waves), the propagation speed
in the medium depends on the frequency of the wave, which is referred to as dispersion (Brillouin,
1960). This dependence can be generically expressed through either one of these two equivalent
dispersion relations:

k = k(ω) (16)

or
ω = ω(k) (17)

Although the e�ect of dispersion can be neglected in the majority of practical cases�in which case
the dispersionless expression 15 holds�it can become important in the propagation of multiple
frequencies through the medium over substantial distances. As may be seen in Fig. 2 and will be
made clear in �3.4 and subsequent sections, the combination of di�erent frequencies over a broad
frequency range, at exactly the right phases, is what gives rise to complex wave geometry. These
wave groups are sensitive to the e�ect of dispersion, which tends to deform their shape over distance,
in proportion to the magnitude of the dispersion at the di�erent frequencies, the distance traversed,
and the frequency range of the associated group. The group itself moves at group velocity (Hamilton,
1839)

vg =
dω

dk
(18)

that is generally distinct from the phase velocity, vp = c, of the individual frequency components
that make it (Eq. 15). The concept of wave groups apply very generally to all types of waves that
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Figure 7: An example of a plane wave in two dimensions at three di�erent time points. The temporal
frequency is related to the wavenumber (the spatial frequency) through c = ω/k. The direction of the

propagation is determined by k⃗, which is perpendicular to the wave front (Eq. 23 with kz = 0) (its
magnitude is not to scale in the �gure). The magnitude in grayscale corresponds to the (real part of

the) �eld function, ψ = Aei(ωt−k⃗·r⃗), in arbitrary units, whose identity depends on context: displacement,
velocity, pressure, electric �eld, etc.

are not made of only a single frequency and can appear in di�erent names according to context�
wave packets, pulses, bursts, impulses, envelopes, and modulations�all of which move at vg ̸= vp in
dispersive media.

Using the solution form in Eq. 13 for the string / one-dimensional wave equation (9) enables
separation-of-variables type of solution to the spatial and time-dependent terms, so that y(x, t) =
y(x)eiωt. This solution is said to have harmonic time-dependence, and in this case the remaining
spatial equation simpli�es to the one-dimensional homogenous Helmholtz equation (von Helmholtz,
1860) that is encountered in numerous places in physics

∂2y(x)

∂x2
+ k2y(x) = 0 (19)

Therefore, Eq. 9 can be brought to the same form as the simple harmonic oscillator (Eq. 5)�an
ordinary instead of a partial di�erential equation. Correspondingly, the period of an ideal string of
length l takes the same algebraic form as in the harmonic oscillator with

T = 2l

√
µ

FT
(20)

with FT being the tension force in the string and µ its mass per unit length.
In systems of two and three spatial dimensions, the wave equation is more complex, as it admits

oscillations that are distributed in all dimensions. The three-dimensional wave equation is

∇2ψ =
1

c2
∂2ψ

∂t2
(21)

with the Laplace operator ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 in Cartesian coordinates, for example. This
linear homogenous scalar wave equation is solved for some �eld function ψ(x, y, z, t), whose exact
identity depends on the medium and the type of wave. In the case of sound waves it is pressure,
velocity, or density. In the case of electromagnetic radiation, it is electric �eld or magnetic �eld.
And it is the displacement in elastic waves. The general solution here is of the form ψ(x, y, z, t) =

ψ1(αx+ βy + γz − ct) + ψ2(αx+ βy + γz + ct), with the constraint of γ =
√

1− α2 − β2. For the
basic cases (no loss, no sources, everything is linear), the solutions retain the same form as in Eq.
13,

ψ(x, y, z, t) = ψ1e
i(ωt−k⃗·r⃗) + ψ2e

i(ωt+k⃗·r⃗) (22)

for a �eld de�ned by the vector r⃗ = (x, y, z) (see Fig. 7 for a two-dimensional example). In the most
general case, k⃗ is the propagation or wave vector, whose magnitude is the wavenumber |k| = 2π/λ,

k⃗ = kxx̂+ ky ŷ + kz ẑ =
2π

λ
(αx̂+ βŷ + γẑ) (23)
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Figure 8: The wave propagation vector k⃗, whose magnitude is the wavenumber and its direction can be
expressed by three angles, obtained from the inverse of the direction cosines, which together produce up
to three spatial frequencies (Eq. 23; plotted after Figure 3.9, Goodman, 2017).

where α, β, and γ are the direction cosines related through the condition on γ, which satis�es the
general three-dimensional solution (Fig. 8; e.g., Goodman, 2017). The directional components are
then three spatial frequencies, kx, ky, and kz which may be independent of one another.

The oscillations are considered free if there is no external force on the system. When the system is
�nite�as in the classical case of a string, bar, or membrane�the solutions to the wave equations are
often given as a superposition of series of allowed (resonance, natural, normal, or eigen-) frequencies
ωn, each of which is di�erently distributed in space (see �3.4.1).

3.1.4 The simple frequency

All of the idealized systems above admit discrete parametric frequencies, which are theoretically
knowable at an arbitrary level of precision. Because these oscillations do not lose any energy, they
describe a state of equilibrium, where no internal or external forces disrupt the motion periodicity,
and thereby a�ect its frequency content.

The basic de�nition of frequency as a reciprocal of the period (Eq. 1), which itself depends on
other parameters, goes back to the seminal works on the string by Mersenne (1636) and the pendulum
by Galileo (1638 / 1914) and is universally found in introductory physics textbooks. According to
this de�nition, the period and frequency are equivalently informative, so measuring only one of the
two is su�cient. In theoretical calculations, to avoid circularity�where the period is determined by
the frequency and the frequency is determined by the period�it may be necessary to resort to a
speci�c parametric estimation (as in Eqs. 2, 3, 4, and 20).

The temporal regularity of such simple physical systems and others makes them the basis for time
measurements. For example, the sundial, pendulum, spring, quartz, and atomic clocks are all based
on periodic systems that are highly stable, within some degree of precision14. To turn the periodic
system into a clock, it is necessary to add a counter, which provides the information about the time
elapsed according to the number of periods counted from an initial reference moment. The degree
of precision of the clock increases as the oscillation period decreases, but ultimately, evaluating the
precision of a �ner-unit clock requires other clocks or carefully dated events with known precision
that can serve as a reference.

These considerations foreshadow an understanding that both time and frequency can be ulti-
mately used to describe the same physics and may be seen as equivalent.

Although the wave description of physical systems tends to be the most accurate one, it will be
easier to focus in the following on one-dimensional oscillators, whose solutions share many similarities
to wave motion, as was seen through the similarity between the one-dimensional string and the
simple harmonic oscillator equations. Wave propagation and dynamics have been formulated in a
large number of partial di�erential equations at a much higher degree of complexity than is presented
here (e.g., Whitham, 1999). It is, however, possible to adopt an observer's point of view that is

14In contrast, systems like the hourglass and water clock work on an aperiodic principle, for which a decay event constitutes the
time duration unit. Another time measurement is based on the decay of radioactive isotopes. This is a probabilistic event of an
ensemble of particles, whose half-life constitutes the time duration unit, expressed as the time constant of an exponential decay.
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more readily captured by the signal-processing approach, which quanti�es and describes arbitrary
time signals received at the point of detection, that is largely agnostic to the particulars of the
oscillatory system. Signal processing techniques often deal with time signals at �xed positions,
which means that the contributions of spatial variations through the k⃗ · r⃗ term turn into a constant
(time-invariant) phase that can be incorporated into the initial conditions. Similarly, in spatial signal
processing using a spatial array of measurement positions, time can be �xed (ωt = const), which may
translate to constant phase di�erences between the array points. In more complex systems, fewer
parameters remain constant, and yet local measurements can still be subjected to signal processing
analysis, which in our case entails also spectral analysis, as is discussed below.

3.2 Damped oscillations: relaxing the condition of strict periodicity

Relaxing one level of idealization, the simple harmonic oscillator model becomes much more uni-
versally applicable when losses, or damping, are incorporated into the oscillatory motion15. For
example, the harmonic oscillator (with mechanical damping), the pendulum (with friction), and the
RLC (resistor�inductor�capacitor) circuit (Fig. 9) can all be seen as embodiments of this linear
ordinary di�erential equation:

d2x

dt2
+ 2r

dx

dt
+ ω2x = 0 (24)

where the addition of the term of the �rst derivative of x to Eq. 5 represents the damping, as
long as r > 0, which entails dissipation of energy from the system. r and ω are determined by
the various physical characteristic parameters of the systems (e.g., capacitance, inductance, mass,
sti�ness, resistance). The general solution here is of the form

x(t) = x0e
−rt cos(ωdt− φ0) t > 0 (25)

where the additional exponential term e−rt represents the envelope of amplitude decay due to loss
of energy at rate r from its initial magnitude x0 at t = 0, and ωd is a lower frequency than that of
the simple (lossless) harmonic oscillator ω, given by

ωd = ω

√
1−

( r
ω

)2

(26)

As before, equivalent solution forms are available, similarly to Eqs. 7 (separate sine and cosine
terms) and 8 (complex exponential). The motion described by these equations is, strictly speaking,
aperiodic, as the amplitude of the motion decreases with every oscillation (Fig. 2 D). Therefore, a
narrow de�nition of periodicity would consider the application of the notion of frequency inadequate
(e.g., Morse and Ingard, 1968, p. 41), given to the mathematical de�nition of periodic functions

x(t+ nT ) = x(t) n = 0,±1,±2... (27)

for all t and period T ̸= 0. However, frequency can be readily salvaged, if it is computed only
with respect to the phase of the motion, irrespective of the decaying amplitude. Then, it would be
periodic, as the general solution can be expressed in a similar form to the simple harmonic oscillator,
only at frequency ωd rather than ω. Nevertheless, unlike the free oscillation, the damped oscillation
is not de�ned at t < 0, at a time when energy must have been imparted for the motion that dissipates
it later on at t ≥ 0.

A rearrangement of the solution (25) allows for the de�nition of so-called complex frequency,
which includes both the exponential amplitude as well as the periodic sinusoidal term (Bode, 1945,
pp. 18�30)

s = ω + ir (28)

The advantage of this quantity is readily seen by plugging it in Euler's formula

eist = e−rt [cos(ωt) + i sin(ωt)] (29)

Now the right side of the equation can be used to form a complete solution that includes both
oscillation and damping terms, such as the one in Eq. 25. Using somewhat di�erent reasoning,

15Euler (1750 / 2021) originally referred to the simple harmonic oscillator without damping (�3.1) as belonging to the ��rst
kind�, the damped oscillator as the �second kind�, and the driven oscillator (�3.3) as the �third kind�.
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Figure 9: Three types of harmonic oscillators with loss (damping). Left: mass�spring�damper. Middle:
pendulum with friction from air. Right: resistor�inductor�capacitor (RLC) circuit.

this solution form has become prevalent in network analysis and control theory using the Laplace
transform (see �3.4.4), where cases in which r < 0 are of interest too, designating parametric regions
of system instability, as may be the case in some situations implied in the next section. Despite
its engineering usefulness, the complex frequency is largely a mathematical convenience that binds
together the real frequency parameter and the real decay constant as one complex number that
greatly simpli�es the analysis of linear networks, such as electronic ampli�ers and active �lters.

3.3 Driven oscillations: the beginning of frequency time-dependence

As is apparent from the damped harmonic oscillator response, any oscillation will eventually cease,
or become negligible and immeasurable, after enough time has elapsed. Therefore, in order to set
such a system in motion in the �rst place, it is necessary to force it out of its resting state16. Thus,
the next level of complexity that is added is the e�ect of an external force, which in one dimension
can be described using the inhomogeneous ordinary di�erential equation (Morse and Ingard, 1968,
pp. 43�60)

d2x

dt2
+ 2r

dx

dt
+ ω2x = F (t) (30)

The general solution of this equation consists of two terms: the solution to the homogenous equation
that is independent of F (t) as was given in Eqs. 24 and 25, and a particular solution that depends on
the force F (t). Unlike the di�erential equations reviewed in �3.1 and �3.2, Eq. 30 explicitly depends
on time through F (t) (it is a nonautonomous equation), so the particular solution is dependent
on the absolute time point and not only on the elapsed time. Therefore, the oscillator response
can be seen as a superposition of the free oscillation�a transient component that eventually dies
out�and a forced response that receives energy for its motion from the external force. The speci�c
force F (t) that drives the oscillator, and hence the particular solution to Eq. 30, is best classi�ed
using the force's own frequency content. In general, when the force contains discrete frequencies,
they also appear at the output of the oscillator, only with modi�ed amplitude and phase compared
to how they appear in the force. For example, a force that contains several frequencies that are
close in value can give rise to an amplitude modulation type of oscillation (Fig. 2 E). If the force
is impulsive�describing a pulse, burst, explosion, or another unspeci�ed brief disturbance�then it
starts the oscillator and gives rise to the transient response as in the damped oscillator case (Eq. 25).
The force can also be random, which means that it does not contain any discernible frequencies, but
only a certain bandwidth in the spectrum17, or �white noise�, so it has to be treated using statistical
methods (see � 3.5.3). In this case, the response mirrors the undamped (free) oscillations of the

16Note that the words forced and driven are used more or less interchangeably in mechanics. In the context of communication and
signal processing, it has become more common to refer to modulation, which entails that the force dynamically varies the amplitude,
phase, or frequency of the oscillator through one of its parameters, often at a slow rate relative to the oscillator frequency.

17It is common to distinguish between narrowband and broadband signals, which occupy either narrow or broad frequency
ranges, or bandwidth, in the spectrum, respectively. The de�nition is not always clear cut and it depends on the application, and
in many cases, on the �lters and the quantitative methods that are involved in analysis. Roughly speaking, narrowband signals
are similar to pure sinusoidal oscillations, generally allowing for some �uctuations around the center frequency. Broadband signals
can contain multiple, well-separated frequencies�sometimes over an in�nite bandwidth�that can be represented mathematically
as sums. Broadband signals can also constitute continuous range(s) of frequencies that are better treated statistically as ensembles
of frequencies rather than as a sum of discrete frequencies. These distinctions will become more meaningful in the subsequent
sections.
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system as in Eq. 6. Forces are often described using the piecewise Heaviside step function,

u(t) =

{
0, t < 0

1, t ≥ 0
(31)

that can be used in modeling the discontinuous switching-on moment by multiplying the force func-
tion, F (t)u(t). Taking advantage of the presumed linearity of the system, the general classi�cation
into basic force types is particularly useful, since many (if not all) arbitrary forces can be represented
as a superposition of these basic types.

Evidently, unlike the free and damped frequency de�nitions, forced motion may produce fre-
quencies that are observable only from a certain time point as dictated by the external force. This
understanding clashes with the requirement for constant (time-independent) frequencies that was
entailed by the simple and damped harmonic oscillators. And yet, it is nevertheless possible to
retain the de�nition in which frequencies are time independent and strictly parametric, using a
superposition of in�nitely long constant frequencies through the Fourier analysis, as is explained
below.

3.4 Fourier analysis: Frequencies that never die out

Fourier analysis is an indispensable set of mathematical tools in the study of all oscillatory phe-
nomena. It originally began from the Fourier series for the study of the heat equation in bounded
systems, where it was applied to the string equation as well (Fourier, 1822 / 2009). In the limit of
an unbounded system, the series can be generalized into an integral�the Fourier transform�which
has been foundational for the analysis of continuous phenomena18. Out of all the integral trans-
forms that are routinely used in harmonic analysis, Fourier analysis rules supreme due to its relative
simplicity, comprehensive theory, and its recurrent emergence in the solutions of di�erent physical
problems. Less common integral transforms all generally rely on the same template, in which the
product of an arbitrary function g(t) and a kernel function K(t, ω) is integrated over the entire
domain to yield the inverse-domain representation of the function, G(ω). Thus, the majority of the
points drawn in the analysis below hold for related transforms, without loss of generality.

Fourier analysis appears in at least three distinct but complementary contexts in the standard
curriculum of physics and engineering. First, the Fourier transform organically appears in the
derivation of several solutions in wave physics, such as the di�raction integral in optics (Du�eux,
1946 / 1983) or in quantum mechanics (Heisenberg, 1925, 1927). Second, along with the closely-
related Laplace transform, it is presented as a powerful method for the solution of linear ordinary and
partial di�erential equations of the kind that was reviewed above (Sommerfeld, 1949), which captures
the essential dynamics of all oscillatory phenomena. Third, it is a critical tool in signal processing
theory, which is used to analyze arbitrary time signals following measurements and synthesis. A
related usage is to apply Fourier analysis to get a handle on patterns in the reciprocal domain of
various periodic phenomena (e.g., the reciprocal lattice of crystals, de�ned by the reciprocal of the
distances between the lattice points; Ewald, 1921).

We will show how the lack of attention in the transition between the Fourier series and the
Fourier transform can hint at the idea that frequency and time are one and the same thing. While
the understanding that time and frequency are two separate dimensions is well-ingrained in the
modern study and applications of time�frequency analysis (�3.5.6), it is not nearly as obvious from
the physics literature, which does not dwell on the de�nitional intricacies of frequency.

3.4.1 The Fourier series and local or in�nite periodicity

Discrete spectra that are composed of a series of eigenfrequencies coincide well with the method of
Fourier series expansion, which enables periodic solutions of di�erential equations, as naturally arise
for Eq. 5 or 21 with certain given boundary conditions that are de�ned on a bounded geometric
interval. Because of the basic wave relations between the wavelength and the frequency, any spatial
periodicity also results in corresponding temporal periodicity. However, in line with our focus on

18The Fourier series preceded the transform in Fourier's own text and is always presented �rst in introductory texts, being
simpler to grasp and motivate. However, the transform itself can be universally applied to aperiodic systems as well and may
therefore be more general. Thus, it is arguable whether this presentation order, which is followed here too, is indeed the optimal
one (Obradovic, 2024). See also discussion of realistic acoustic sources in Weisser (2021, pp. 54�75).
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time signals, we shall strictly focus on the temporal series and not deal with the analogous spatial
series, which is mathematically identical otherwise.

The Fourier series for a piecewise smooth periodic function x(t) over the interval [t1, t2], with the
period set to T = t2 − t1 takes the form

x(t) ∼ a0 +

∞∑
n=1

an cos(nωt) + bn sin(nωt) (32)

where the Fourier coe�cients an and bn are determined by

an =
2

T

∫ t2

t1

x(t) cos

(
2πnt

T

)
dt n = 1, 2, 3, ... (33)

bn =
2

T

∫ t2

t1

x(t) sin

(
2πnt

T

)
dt n = 1, 2, 3, ... (34)

and for n = 0

a0 =
1

T

∫ t2

t1

x(t)dt (35)

The series 32 converges to the original function19. The periodicity gives rise to a series of frequencies
fn = n

T , corresponding to angular frequencies ωn = 2πn
T . When n = 1 and f = 1

T , it is referred to as
the fundamental frequency, while higher frequencies with n > 1 are its harmonics (see Fig. 10 for an
example). The parameter a0 represents the mean of the function, which is a constant by de�nition,
and is often referred to as its DC level, borrowing from electricity20. By virtue of the periodicity of
all of its components, the Fourier series naturally extends to the entire time domain (−∞,∞) and
retains its periodicity in T throughout. Example of the kind of oscillations that can be modeled
with Fourier series analysis are given in Figs. 2 F and 10.

Both the original function x(t) and its Fourier series representation are explicit functions of time.
Only that the variable t here represents only a segment of the time axis that overlaps with a period
T corresponding to the time interval [t1, t2]. The period is akin to a ruler that is positioned in space
to measure the length of an object. Due to the inherent periodicity of the trigonometric functions,
the Fourier series is mathematically agnostic as for how much of the time axis is covered by the
same ruler shifted, so it can just as well cover the entire time domain with in�nitely many periods.
For this to work, we can think of the time as being mapped on the unit circle and varying between
0 and T, so that t = Tϕ/2π, where the phase is bounded on the interval, 0 ≤ ϕ ≤ 2π. Therefore,
unless we count the number of periods within our extended function where t > t2 and t < t1, we
are only able to uniquely represent a short temporal duration of t(modT )21. The temporal ruler is
essentially a single clock unit�a single tick�that measures time using a �xed period, which can be
subdivided as needed using shorter periods.

In the Fourier series there is no ambiguity in the relationship between the time variable t and the
frequency. It is clear that t only serves as a parameter to locally track the phase within the period
being analyzed. Using the phase wrapping property of the periodic trigonometric functions (see
Footnote 21) allows the extension of the functions over the entire time domain at no extra e�ort.
This entails a strong assumption that the period of the extended function remains unchanged over
the entire domain of t. This is tantamount to the requirement that no energy will be lost and no
external forces will be applied at any moment in the past or future and disrupt the system motion.
However, if we subscribe to the belief that the in�nite past and future may not be knowable, this
assumption is hardly realistic. It means that time and frequency may only be thought of being the
same in a very limited and local sense (both in time and space) just as in �3.1. Hence, under the
Fourier series analysis, both frequency and period are parametric, so time and frequency convey the
same information, but only in a very restricted sense.

19More precisely, the Fourier series converges to the average value between the limits of each value of x, so that it is equal
to (x+ + x−)/2, including at the limits t1 and t2, if x(t1) ̸= x(t2). In general, the integral over the period must be �nite

(
∫ t2
t1
x(t)dt < ∞)�a reasonable condition for well-behaved physical functions�and the series has to converge in order for the

Fourier series to exist. Convergence almost everywhere between the series and the function is ensured for functions that are square
integrable (L2 functions), or

∫ t2
−t1

|x(t)|2dt < ∞ (Carleson, 1966; Lacey, 2004). These intricacies are beyond the scope of this

discussion, which is concerned with the evolution of the concept of frequency, in part through the wide application of the Fourier
analysis. See Folland (1992, pp. 71�82) for more details about the convergence of the Fourier series.

20Direct current (DC) electric power sources such as batteries are idealized in standard models as a constant voltage with no
frequency components, although the battery parameters too have a time course, which is relatively slow.

21By virtue of the phase wrapping property of the trigonometric functions: sin(ϕ + 2nπ) = sin(ϕ) and cos(ϕ + 2nπ) = cos(ϕ),
for any integer n.
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Figure 10: An example of Fourier Series of a sawtooth wave with a period T , x(t) = 2t
T
, centered on the in-

terval (−T
2
, T
2
] (top right) at four levels of approximations of the in�nite sum, using 2, 5, 10, and 25 terms

in the summation (on the right column). Each summation combines harmonics with gradually diminish-

ing amplitudes (left column). The formula for the Fourier series is x(t) = 2
π
Σ∞

n=1
(−1)n+1

n
sin

(
nωt
T

)
. It

can be seen that as more harmonics are added to the summation, the line becomes more straight with
�ner oscillations, which nevertheless grow around the discontinuity at the edge of the interval, in what is
referred to as the Gibbs phenomenon (Wilbraham, 1848; Gibbs, 1898, 1899; Hewitt and Hewitt, 1979).

3.4.2 The Fourier transform, aperiodicity, and the convenience of �zero frequency�

Things become more complicated when the Fourier series is generalized to the Fourier transform,
as the functions involved cover the entire time domain rather than a �nite interval in which the
period is well-de�ned. This enables the expression of aperiodic functions as the superposition of a
continuum of periodic functions with known frequencies (for example, see Fig. 2 G). To obtain the
transform, it is instructive to rewrite the Fourier series in its exponential form that is equivalent to
Eq. 32,

x(t) ∼
∞∑

n=−∞
cne

− 2iπn
T t (36)

where the coe�cients cn are given by

cn =
1

T

∫ t2

t1

x(t)e
2iπn
T tdt (37)

The original function can then be reconstructed by putting together the two expressions 36 and 37

x(t) ∼ 1

T

∞∑
n=−∞

∫ t2

t1

x(t̂)e
2iπn
T t̂e−

2iπn
T tdt̂ (38)

In the limit of a very large period that covers the entire time axis, 2π/ω = T → ∞, whereas
1/T → δω/2π, which enables the substitution of the in�nite sum with a continuous integral, yielding
the Fourier integral

x(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
x(t̂)eiωt̂e−iωtdt̂dω (39)
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where the small frequency interval δω was replaced with the di�erential dω. The Fourier transform
F of x(t) is then de�ned as

F [x(t)] = X(ω) =
1

2π

∫ ∞

−∞
x(t)e−iωtdt (40)

with X(ω) being the Fourier spectrum, which is generally a continuous function. Similarly, the
inverse Fourier transform is22

F−1 [X(ω)] = x(t) =

∫ ∞

−∞
X(ω)eiωtdω (41)

This operation is sometimes referred to as reconstruction or synthesis, whereas the Fourier transform
itself (40) is analysis or decomposition23.

In the limit of T → ∞, the Fourier transform yields a continuous function of frequency, so fre-
quency is no longer a discrete set of parameters as in all previous cases. Short of setting the Fourier
integral limits at in�nity to capture the signal and time in their entirety, the underlying Fourier series
periodicity creeps in, and gives rise to a periodicity artifact�the appearance of phantom periodic
replicas of the time signal due to insu�cient coverage of the time domain. Therefore, �nite approx-
imations to the theoretical transform are de�ned over a single period only, which encompasses the
signal duration, in consideration with its bandwidth (�3.4.3). In general, in short-time applications
it is customary to limit the time interval of the signal through windowing (see �3.5.6). An example
of the application of the Fourier transform on an aperiodic signal and the e�ect of diminishing δω
(and an increase of T toward in�nity) and phantom periodicity is illustrated in Fig. 11.

The limit in which T → ∞ results also in mapping of the time axis onto the complex unit circle. In
particular, the transform includes the special value of ω = 0, or zero frequency (DC), whose in�nite
period T = ∞ spans the entire time domain. Just like the a0 (or c0) coe�cient in the Fourier series,
it essentially refers to the mean of the time function, only that here, for mathematical convenience, it
stitches the integration around zero to make frequency continuous between the negative and positive
portions of the frequency axis (−∞, 0−) and (0+,+∞) (or, less elegantly, it connects the period axis
at T = −∞ and T = +∞). However, zero frequency is an oxymoron�it refers to a mean value of
a constant, which has nothing cyclical about it and, hence, neither periodicity nor frequency in the
physical sense24. This category mistake is not a small detail, as is argued below25.

3.4.3 Are frequency and time the same thing?

One of the strengths of the Fourier transform is that it represents the complete signal or wave and
it is not an idealization of periodicity over a �xed interval as is the Fourier series. Therefore, it
provides a complete and correct reciprocal representation of the studied phenomenon. The nuanced
zero-frequency limit allows for a conceptual switch between the information a�orded by the time
dimension and that which is given by a continuous frequency variable. It produces a frequency-
domain representation in the form of X(ω) that does not depend on time explicitly. However, the

22Di�erent conventions exist of the sign of the argument in the exponent and of the 1/2π constant, which is sometimes omitted
or appears in the inverse transform, or as 1/

√
2π in both the transform and its inverse.

23The conditions on convergence of the transform and its inverse are more involved than in the case of the Fourier series where
square integrability is the condition for convergence (see Footnote 19). The most well-behaved class of functions are those in
L1 ∩ L2�they are both absolutely integrable (belonging to L1, for which

∫∞
−∞ |f(t)|dt < ∞) and square integrable (L2, for which∫∞

−∞ |f(t)|2dt < ∞ ). The transform can nevertheless be applied to so-called generalized functions, such the Dirac delta function

and other distributions, which may not be as well-behaved in their convergence and integrability properties. See Folland (1992) for
further details.

24Mathematically, every constant function x(t) = C satis�es the periodicity condition (Eq. 27), since x(t+ nT ) = x(t) for all t
and integer n = 0,±1,±2... However, for the case of a constant function, there is no associated oscillation that corresponds to this
condition.

25In some applications, it is common to invoke the analytic signal�a complex function whose real part is identical to the
measured time signal, but whose spectrum does not contain negative frequencies, which are taken to be redundant (Gabor, 1946).
Even in this alternative formulation, the zero frequency is always included. The complex signal can be obtained directly from the
real signal through the Hilbert transform, which itself has a singularity at t = 0 that requires using Cauchy's principal value in
order to obtain the limit (see �3.5.7). Our zero frequency is not a singularity in the mathematical sense, but rather in the physical
sense�we argue that the quantities that are referred to by T and t are categorically di�erent and it is their merging that muddies
the analysis of the frequency concept. Another argument against the literal acceptance of zero frequency can be made based on the
idea of �very small zero�, which is an in�nitesimally small number that is e�ectively taken to be zero in physics, for convenience of
analysis and modeling. It must not be confused with mathematical zero, or �essential zero� that is realistically nonphysical (Ellis
et al., 2018).
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Figure 11: An example of how the approximation of the limit of the Fourier transform (39) works to cover
increasing intervals from the time axis, using the reconstruction of an aperiodic signal�a narrow Gaussian
(bottom right)�from the summation of an odd number Fourier series terms. The Fourier transform itself
is based on the Fourier series, which is a formulation of periodic functions with period T as series of simple
periodic functions. As the period T is made larger, a bigger portion of the time domain is being captured
by the Fourier series, until in the limit of the Fourier transform, it overlaps with the entire time axis.
In the example of the �gure, the exact spectrum of the Gaussian (i.e., its Fourier transform, which is a
Gaussian as well) is sampled on the frequency axis in diminishing intervals (left column). Each sample or
point on the spectrum (line spectrum) corresponds to a single sinusoidal component in the Fourier series,
which can be then summed to reproduce an approximation of the original time signal (right column).
With a growing number of spectral components, δω gets closer to zero, T covers a larger interval of the
time axis (marked in blue at the center of the plots on the right), and the approximation gets better.
The signal aperiodicity is captured in the approximation, as the increased number of components pushes
the inevitable phantom periodic parts of the summation away from the Gaussian centered at zero. The
phantom periods in the example are visible on the three top right time functions that are approximated
by a small number of components. They disappear in the bottom right example, but they still appear
out of the displayed time interval. In the Fourier transform limit of in�nitely many dense components,
all phantom periods disappear and the aperiodic nature of the signal is perfectly retained. Otherwise, in
all other �nite approximations of the reconstructed time signal, it is necessary to truncate it to a single
period only, in order to avoid phantom periodicity.

Fourier transform and its inverse are characterized by near symmetry with respect to the roles of
time and frequency and how they appear in the equations�only with the occasional sign change.
Little but their representational nomenclature can aid us in distinguishing between the two without
prior knowledge. Indeed, it is not uncommon in the harmonic analysis literature to use neutral
nomenclature instead of t and ω to emphasize the variable and inverse-variable symmetry and
abstract away from the speci�c identity of time and frequency (or space and spatial frequency;
e.g., Healy et al., 2016). Now, with the transformation between x(t) and X(ω) that has become
habitual in analysis (for example, for the solution of di�erential equations), the two representations
are put on equal footing�each with its own merits�and it is not unheard of to arrive at an implicit
understanding that time and frequency domains convey the same information at all times, even if
time is taken as the more physical quantity of the two (e.g., Blinchiko� and Zverev, 2001, pp. 2 and
27).

There are two important theorems that bolster the view that time and frequency representations
are equivalent, both in terms of their total energy content and the information they carry. The �rst
one is Plancharel theorem, which states that the time signal and its spectrum contain equal energy:∫ ∞

−∞
|x(t)|2dt = 2π

∫ ∞

−∞
|X(ω)|2dω (42)

This equality also holds for the more limited case of Fourier series, where the sum of the harmonic
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component amplitudes in the series contain the same energy as the original signal (Parseval's theo-
rem) (Titchmarsh, 1948).

The second relevant theorem states that a continuous bandlimited time signal can be accurately
reconstructed from a discrete time series of its amplitude values as long as it is regularly sampled at a
frequency that is double or larger than the signal bandwidth. This is Shannon's sampling theorem�
a fundamental result for all digital signal processing applications�that invokes both the Fourier
transform and the Fourier series in its original proof (Shannon, 1948, 1949; see historical account in
Lüke, 1999). While real signals have an in�nite bandwidth, for all intents and purposes the sampling
theorem provides a perfect prescription on how to discretely (digitally) capture continuous (analog)
signals and release them back also as analog signals with little-to-no measurable distortion with
respect to the original.

Even with these powerful theorems at hand, their usefulness is limited to the present degree of
knowledge of the signal. With full knowledge of the spectrum, we also get access to perfect pre-
dictability of the time signal, and hence completely determined future, whose dynamics is expressed
as the superposition of a continuum of sinusoids with constant periods26. The time signal and its
spectrum are fully accounted for as long as all inputs to the system (external forces) or losses (dis-
sipation of energy) are taken into account at the input to the Fourier analysis. If the energy is not
conserved, then the problem formulation must be corrected so to include all the changes, in order for
Plancharel theorem (Eq. 42) to still hold. Otherwise, there is nothing in the unmodi�ed spectrum
or time signal that can predict the future with unknown external e�ects on the system.

This reasoning entails that the idea that time and frequency are the same thing may only be
entertained in the case of perfect knowledge of the time signal and its evolution, or alternatively,
of the spectrum at in�nite bandwidth (see Fig. 11 for a graphical illustration of this idea). No
such con�ation between time and frequency�really between time and periodicity�would have been
possible in the �rst place, if it were not for the inclusion of zero frequency and the complete mapping
of the time and frequency axes in the Fourier integral.

3.4.4 The Laplace transform and absolute time

A somewhat clearer relationship between frequency and time is implied by the Laplace transform
(�rst introduced by Laplace, 1814b, Book 1, Part 2, Chapter 2), which is de�ned only for the
positive time domain [0,∞). It is in widespread use in the analysis of linear time-invariant dynamical
systems that have well-de�ned input and output characteristics, whose deterministic response can
be computed once they begin oscillating at time zero (as in �3.2 and �3.3). The Laplace transform
of x(t) is de�ned as

L [x(t)] (s) = X(s) =

∫ ∞

0

x(t)e−stdt (43)

for complex frequency s = iω + r as a parameter (Eq. 28). Convergence of the integral requires
the existence of the integration limit |

∫ τ

0
x(t)dt| < ∞ when τ → ∞, and depends on the choice of

the real part r, which entails a speci�c region of convergence. Setting s = iω, the resultant Laplace
transform provides the characteristic response to given inputs with known frequency content, which
is generally shaped by the system itself. A general inverse Laplace transform L−1 exists as well, and
it can be shown that if for a given function x(t) the inverse transform L−1[X(s)](t) exists, then the
function x(t) is uniquely determined by the Laplace transform itself, up to local discontinuities in
the function.

The Laplace transform may be understood as a special case of the Fourier transform of a signal
x(t), which begins at t = 0 by virtue of the Heaviside function u(t) (Eq. 31), and has a decaying
amplitude that goes as e−rt

L [x(t)] (s) =

∫ ∞

0

x(t)e−stdt =

∫ ∞

−∞
x(t)u(t)e−rte−iωtdt = F

[
x(t)e−rtu(t)

]
(44)

where the 1/2π was omitted. Equivalently, the Fourier transform may be understood as a special
case of the (double-sided) Laplace transform when r = 0.

In the Laplace transform the frequency is still de�ned in the same way as it was in the Fourier
analysis�with component frequencies that never cease and only cancel each other out. Phenomeno-
logically, the relationship with time in the Laplace transform is always deterministic, because any

26This discussion anticipates the concept of determinism, which is invoked throughout the latter part of this work in the Laplacian
sense, that is quoted and discussed more in depth in Appendix �A.
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pure oscillation has an absolute starting point in time and will eventually die o�, as long as the total
damping term is positive (the progression of the exponential is decaying and it takes unique values in
time). Thus, although ω can take any real value on (−∞,+∞), as long as the transform converges,
the inclusion of zero frequency does not seem to pose any serious conceptual problems in this case,
because the notion of an in�nite period is not instrumental in damped systems. Arguably, the spec-
tral information garnered by the inverse Laplace transform is not going to be easily con�ated with
all of time, because its claim is anyway limited to the dynamic response of a system embedded in
time. Invoking the time ruler metaphor again, a damped response may provide a yardstick measure
of duration, like an hourglass, where periodicity is not as useful a concept for the time elapsed as it
is with oscillator-based clocks.

3.4.5 The compact support paradox and the cost of complete determinism

Full knowledge, or determinism, of the signal and its Fourier transform encapsulates a deep discord
with the observed reality. A well-known property of the Fourier transform is that a signal can be
�nite only in one domain (technically referred to as having bounded or compact support27). In other
words, the Fourier transform of a signal with �nite duration has an in�nite bandwidth, whereas a
signal with a �nite bandwidth has an in�nite duration. Slepian (1976, 1983) commented on this
deeply unsatisfactory discrepancy between the mathematics and the reality in which the signals of
interest in engineering are �nite both in time and in frequency. He attempted to resolve this paradox
by making a distinction between the abstract nature of the mathematical constructs that are used in
signal analysis and Reality itself. He further suggested that it is easy to con�ate the observed reality
and the mathematics, but they are not the same thing. The very notion of frequency, to him, is a
construct of convenience and utility that need not have any meaning for the real signal28. He �nally
went on to identify signals whose energy is e�ectively concentrated in �nite intervals both in the time
and in the frequency domains and have negligible residual energy outside of these intervals. Adhering
to these signals is what enables sampling, as was prescribed by Shannon's sampling theorem, which
works well in near real-time and e�ectively turns this uncomfortable paradox moot.

It should be underlined that there is nothing at fault with the Fourier transform itself that ushers
the compact support paradox. It may describe Reality perfectly well, only at a level we have no
access to: inability to garner perfect knowledge about signals in the remote past and future, and
inability to measure in�nitesimally small amplitudes at arbitrary frequencies, as are predicted to
exist by the in�nite support of the Fourier calculus.

3.4.6 The uncertainty principle

Signal determinism in Fourier transform analysis appears to be served a �nal blow in the form
of the uncertainty principle, which becomes a thorny issue exactly for the signals that are not
as compactly bounded as those highlighted by Slepian (1976, 1983). The uncertainty principle �rst
appeared in quantum mechanics, where it was shown that it is impossible to simultaneously measure
the position and momentum of a particle, or alternatively, to simultaneously measure its energy and
time (Heisenberg, 1927)29. However, the uncertainty principle is a more general property of any
pair of functions that are the Fourier transform of each other (as are the quantum position and
momentum and the energy and time operators), as was proven by Gabor (1946) for any time signal
in an analogous way to quantum mechanics30. In this version, the product of the standard deviations

27The support of a real function or signal is the interval along its domain (its variable) that fully contains the function's non-zero
extent, beyond which it is mapped to zero.

28From Slepian (1976, p. 293): �...the words `bandlimited,' `start,' `stop,' and even `frequency' describe secondary constructs
from Facet B of our �eld. They are abstractions we have introduced into our paper and pencil game for our convenience in
working with the model. They require precise speci�cation of the signals in the model at times in the in�nitely remote past and
in the in�nitely distant future. These notions have no meaningful counterpart in Facet A. We are no more able to determine by
measurements whether a `real signal' was always `zero' before noon today than we are able to determine its continuity with time.�
He referred to the observed reality as �Facet A� and to the various analytical tools that are employed to describe and manipulate
it as �Facet B�.

29It is arguable whether Heisenberg (1927) actually proved the uncertainty principle in his seminal paper, where it appeared in
a limited form as ∆p∆q ∼ ℏ (Marburger, 2008; Ozawa, 2015). In his lecture series later, Heisenberg referred to a rigorous proof by
Kennard (1927) that came shortly after, which does not generalize to arbitrary wave functions and is therefore �awed (Marburger,
2008). It was followed by a rigorous proof by Weyl (1928 / 1950, pp. 77 and 393�394), credited to Wolfgang Pauli, based on the
Schwartz inequality. Other proofs for the uncertainty principle exist, beginning with Robertson (1929).

30Particular instances of the uncertainty principle had been known even before Heisenberg. One such relation from electrical
signal analysis was derived by Küpfmüller (1924), who calculated the optimal bandwidth of a bandpass �lter that can retain the
form of rectangular Morse code pulses of certain duration. He recognized that the inverse proportion between the bandwidth and
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of the time and frequency of any arbitrary signal�based on its duration and its Fourier spectral
bandwidth�has a minimum,

∆t∆f ≥ 1

4π
∆t∆ω ≥ 1

2
(45)

with equality of the two equivalent forms achieved only in the case of Gaussian-shaped signals,
whose corresponding Fourier spectra are Gaussian as well. In practice, the uncertainty principle
constrains the precision in which the frequency content of very short time signals can be determined
(see rectangular pulse examples on Fig. 22, left column). Hence, it is also referred to as the
time�bandwidth product theorem in signal analysis. Other transforms in harmonic analysis are all
constrained by similar uncertainty bounds (Folland and Sitaram, 1997; Tao and Zhao, 2016).

While the uncertainty principle in quantum mechanics has been discussed, interpreted, and con-
tested in innumerable texts of physics and philosophy, its signal-analytic counterpart has been ac-
cepted rather matter-of-factly as an inevitable constraint to be reckoned with in applied time�
frequency analysis (e.g., Cohen, 1995; Debnath, 2002). According to Cohen (1995, p. 45), the
signal-analytical uncertainty principle is a misnomer that merely spells out the reciprocal relations
between the time signal duration and its bandwidth, similarly to that mentioned in �3.4.5.

3.4.7 Perceptual discrepancy between time-invariant spectra and time-varying signals

As was implied above, equivalence between the time-domain and frequency-domain representations of
the system dynamics is retained if all inputs and outputs of the system are accounted for. Therefore,
it has been a common practice, especially in physics, to a priori specify the types of forces that
drive the system in order to have no ambiguity as for how the system behaves (the simplest cases
were discussed in �3.2 and �3.3; see �3.5.1). It also entails the existence of a deterministic, time-
independent Fourier spectrum of the corresponding time signal associated with all outputs of the
system (�A.1).

In many engineering applications, however, it is necessary to deal with time variations that are
not well captured by the time-independent spectrum. The most instructive examples of dynamic
signals are di�erent forms of frequency modulation (FM). Although it was originally introduced as a
technique for radio communication, its relevance has been shown for naturally occurring signals such
as human voice and animal vocalizations (e.g., Klug and Grothe, 2010), as Doppler shift as a result of
a moving radiating source (e.g. Middleton, 1977), and the general propagation of broadband pulses
in higher-order dispersive media (Weisser, 2021). For example, sinusoidal frequency modulation has
a time-dependent phase term

x(t) = cos [ωct+m sin(ωmt)] (46)

where ωc is referred to as the carrier frequency, ωm is the modulation frequency, and m is the
modulation index (Van Der Pol, 1930). The time-dependent phase term implies that the signal
has frequency that varies in time. When it is implemented as a stimulus for certain sensory
modalities, it may also be perceived as such. For example, at audible frequencies with a very slow
modulation frequency and large modulation index, a signal of the form of Eq. 46 sounds like a siren.

Despite its time-varying perception, the sinusoidal FM signal can nevertheless be formulated
using Fourier series, as an in�nite series of sinusoids, whose amplitudes scale as Bessel function of
the �rst kind Jn(m) (Carson and Fry, 1937)31

x(t) =

∞∑
n=−∞

Jn(m) cos(ωct+ nωmt) (47)

While mathematically exact and analytically important, conceptually this is an unsatisfying result,
as it does not convey the spectral changes that are perceived in real-time (e.g., Blinchiko� and
Zverev, 2001, pp. 383�395). The same goes for linear FM (up-chirp or down-chirp), which has a

duration ought to be constrained by an unspeci�ed universal constant that is independent of the choice of pulse shape and criterion
for shape retention. In another anecdotal account, Norbert Wiener recounted a talk he gave in Göttingen in 1925, in which he
discussed the uncertainty principle in harmonic analysis (Wiener, 1956, pp. 105�108). He hinted that both Max Born and his
student Werner Heisenberg may have attended the talk and could have been in�uenced by his ideas.

31In the transition between Fourier series and Fourier transform, every term in the series is transformed into a delta-function

pair, representing an in�nitesimally narrow frequency line spectrum (i.e., x(t) = cos(ω0t)
F−→ X(ω) = 1

4π
[δ(ω − ω0) + δ(ω + ω0)]

and x(t) = sin(ω0t)
F−→ X(ω) = 1

4iπ
[δ(ω − ω0)− δ(ω + ω0)] ). While not strictly valid in the classical usage of the transform that

requires �nite signals with �nite energy content, it nevertheless retains the physical intuition and is routinely used in practical
applications. See �A.2 for further discussion.
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Figure 12: Two common frequency modulation (FM) time signals and their respective spectra. On the
top left is a sinusoidial FM signal x(t) = cos [2π · 50t+ 4 sin(2π · 7t)] with its Fourier series components
according to Eq. 47 are displayed on the top right. On the bottom left is a linear FM signal, a rising (or
up-) chirp, with the equation x(t) = cos(2π · 60t + 200πt2). The spectrum of the signal was computed
using the fast Fourier transform (FFT) algorithm (credited to Cooley and Tukey, 1965, but with early
roots traced back to Gauss; Cooley, 1987), whose magnitude is displayed (in blue) on the bottom right.
Also displayed (in red) is the unwrapped phase variable. In both spectral plots, the carrier is marked
with a black circle (fc = 50 Hz for the sinusoidal FM and fc = 60 Hz for the linear FM).

prohibitively complex Fourier transform (Klauder et al., 1960). Examples of these two FM signal
types along with their respective spectra are displayed in Fig. 12.

While these two examples are still deterministic and can be treated in closed form that is analyt-
ically decomposable to component frequencies, they herald the complexity of nonstationary signals,
which are encountered in most realistic contexts. These are signals that vary too rapidly or errat-
ically to be captured by a precise spectrum, but not enough to be completely devoid of structure,
i.e., local periodicities that correspond to well-de�ned spectral patterns. The distinction between
stationary and nonstationary signals and spectra comes from the statistical approach to time series
analysis (see �3.5.2��3.5.5 below). In general, nonstationary signals are those that depend on the
absolute time point at which they are sampled. Speech, music, earthquakes, moving optical objects,
material textures that are momentarily felt by touch, or the electric current that runs a computer
program in its circuitry, can all be thought of as instances of nonstationary signals and stimuli (see
Fig. 15 for examples).

3.5 Beyond the classical Fourier transform

At this point we have identi�ed several aspects of the ubiquitous Fourier transform that are not
straightforwardly reconciled with reality:

� The convenience of zero frequency may lead to con�ation between time and periodicity.

� Complete determinism is required in order to precisely calculate a spectrum.

� Mathematical signals have in�nite support in time or frequency or both, unlike real-world
signals that appear to be �nite both in time and in frequency.

� The spectra of signals that have a distinct nonstationary character (perceived or measured) do
not intuitively re�ect their time-varying nature32.

Many methods have been devised to overcome the �nal three limitations, primarily with the
intent to be able to analyze nonstationary signals, often in real time. Some methods salvage the
classical notion of frequency as a parameter, whereas others only use it in a statistical manner when
the signals are stationary. It is not the intention to survey these methods in any detail, but rather
identify some of the underlying assumptions and guiding philosophy and contrast them with the
de�nition and status of frequency we are contending with.

32To this list we can add issues that are more technical in nature and do not threaten the very de�nition of frequency as the ones
listed: the appearance of negative frequencies, the limitation of applying Fourier analysis to nonlinear systems, and the existence
of stochastic signals that do not have a Fourier representation and can only be analyzed statistically (see �3.5.2��3.5.5).
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3.5.1 Retaining determinism by force inclusion

When the dynamics of an oscillatory system impacted by an external force is studied, the most
common method that is employed in classical science and engineering problems is to include the
applied force with the complete time signal model, so that no external forces are ever truly external
to the analysis (Fig. 13). The most well-studied examples are the inclusion of loss (see � 3.2),
discontinuity in applied force or medium, an impulse, a periodic force, and amplitude-modulated
forces. Each one of these types of forces can be readily represented in closed form, which results in
a particular (inhomogenous) di�erential equation. The forces lend themselves to Fourier analysis as
well, so they inject their own spectral content into the system. Superposition allows for the generation
of arbitrary forces based on these simple building blocks (see �3.3), which is often complemented by
multiplication of the force by functions that further shape it and that transform to convolution in
the reciprocal domain33. The Fourier transform is linear too, which means that time signals can be
also produced piecewise and the total spectrum is obtained by superposition of the di�erent parts.

Therefore, this is a �meta-method� of a sort that presupposes knowledge of all forces impacting
the system. It ensures that over the evolution of its dynamics, the total energy is conserved and
no new information is introduced into its analysis, as both system and external force(s) are isolated
from other external in�uences. Here, frequency and time representations carry exactly the same
information by the very statement of the problem. This is warranted, for example, in situations in
which there is tight control over the signals that are generated by the experimenter or theoretician.
However, as the external forces get more complex and variable, then the usefulness of this method
degrades, as the resultant spectrum becomes less and less intuitive, as was seen in �3.4.7. And,
critically, if the control over a priori de�ned signals is limited, it makes the problem de�nition
idealized, as this type of analysis is only as good as the predictability of external forces that can
be guaranteed, along with the complete knowledge of the system history. This somewhat confusing
problem statement is not generally discussed in physics textbooks, whereas openly acknowledging it
has been the basis for all modern time�frequency analytical methods.

There is a sense of circularity in this important way of dealing with system dynamics, as it implies
that time and frequency representations are equivalent by de�nition. Because, if we added another
force, then it would have been an altogether di�erent problem with its own time and frequency
representations. As these problems are de�ned over the entire time axis, the system under analysis
is e�ectively isolated (also with respect to losses, as any heat generated from energy dissipation
remains in the system; Fig. 13 C). Once again, this way of thinking is only possible because of the
subtle switch between periodicity and time in the Fourier integral, facilitated by the inclusion of the
zero frequency.

3.5.2 Statistical signal processing I: Motivation

A statistical rather than a deterministic approach to signals has been widely used in spectral analysis
within numerous disciplines of science and engineering (e.g., Middleton, 1996 / 1960; Jenkins and
Watts, 1968; Bendat and Piersol, 2011). Probabilistically expressing time signals, or time series in
the discrete case, is done by relating to records (or samples) that are drawn from a process that
is de�ned as an indexed set of these samples {xi(t)} and can be either deterministic or stochastic
(random). Referring to an underlying phenomenon as a process indicates that it is not completely
under control between observations and the most that can be known about it is encapsulated in the
statistical regularities that it exhibits and can be observed over time. The collection of samples forms
an ensemble, which is characterized by an underlying probability distribution. As such, every feature
that the process possesses may be treated as a statistical property as well, which has its own mean,
mean square, variance, higher-order moments34, etc. This approach applies to the corresponding

33The convolution theorem states that the product of two functions Fourier-transforms to a convolution integral in the reciprocal
domain, so for arbitrary time functions s(t) and r(t) we have

∫∞
−∞ s(t)r(t)e−iωtdt = 2π

∫∞
−∞ S(ω − ω′)R(ω′)dω′ and the inverse

2π
∫∞
−∞ S(ω)R(ω)eiωtdω =

∫∞
−∞ s(t− t′)r(t′)dt′. Despite its apparent complexity, the convolution operation and theorem facilitate

the calculation of a cascade of two functions or more, each of which has a temporal / spectral response of its own. For example, in
signal processing it is straightforward to understand what a low-pass �lter does�it removes low frequencies from a signal (such as
cutting the bass from sound). But to obtain the time signal of an arbitrary signal that goes through the �lter, it is necessary to
convolve it with the �lter's time-domain function�its impulse response.

34A moment of order n of a function or distribution p(t) is de�ned as the expected value of a power of the variable, E(xn) =∫∞
−∞ xnp(x)dx. So, the �rst moment is the mean, the second moment when taken around the mean is the variance, the third is
skewness, and the fourth is kurtosis. Aside from characterizing the distribution, in some cases it is possible to uniquely obtain the
distribution from its set of moments (when they exist).
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Figure 13: Three ways to model the energy balance in a dynamical system: A. By assuming full isolation,
so there is no energy dissipation or addition and the total energy within the system boundaries is constant.
This assumes that all energy sources are self-contained and any motion that is associated with the system
center of mass is inertial, while internally the system is in equilibrium. This is a classical conservative
system that appears stationary. B. By including losses and energy inputs in the models, but not as
an integral part of the system, which is instead modeled as non-conservative, and hence, open. C. By
including all losses and inputs to the system as part of yet a larger system (the environment plus the
system), which is itself conservative, in the sense that the total energy is accounted for and remains
within the modeled system.

frequency-domain estimates of time signals as well. The motivation to use statistical methods in
modeling and analysis is extensive and only a few reasons are mentioned here:

� The data describe the aggregate behavior of numerous particles / systems / components that
cannot be individually tracked and where their individual nature does not play a (critical) role
at a higher level of analysis (e.g., the macroscopic behavior of many molecules, the amplitude
and phase of individual wavefronts of sunlight re�ected from surfaces, or the time evolution of
rain that is composed of many raindrops).

� The time data appear random (like noise) or complex, perhaps without clear patterns of peri-
odicity, and the data may not be exactly reproducible between measurement repetitions.

� The analysis applies to a sample of deterministic signals (or to one long signal cut into seg-
ments) that are measured over time and can be treated as though they were drawn from the
same probability distribution (e.g., transmission of amplitude, frequency, and phase modulated
signals with or without noise, Middleton, 1996 / 1960; the long-term average spectrum of music
or speech, Voss and Clarke, 1975; Byrne et al., 1994).

� The signals are distributed over a certain bandwidth of frequencies, whose decomposition to in-
dividual components is generally impossible35 or impractical. For example, the phase structure
of ambient light, whose frequency range is too high to be measurable with standard instru-
ments, including the retinal photoreceptors in the eye, or the characterization of ambient noise
in communication equipment.

� Formation of statistics of random signal ensembles whose exact sample properties such as the
speci�c start and end times (i.e., their relative phase and duration) are unimportant.

� Analysis of signals about which not much is known and about which there is a signi�cant degree
of uncertainty, so a generic distribution has to be employed by making certain (conservative)
assumptions (e.g., stationarity, ergodicity, normality, uniformity, independence of events, mem-
orylessness).

� Analysis of systems that are too complex to be modeled directly using deterministic models
such as those reviewed in �3.1��3.3.

� Analysis of systems in the presence of noise, either from the measurement instruments and
methods, or from external sources, where the aggregation of more measurements leads to re-
duction of measurement error and hence to more precise estimation of the response of the
system.

� The analysis pertains to an average system response to arbitrary inputs and outputs.

In all cases, the statistical approach represents an observer's point of view, who is interested in
extracting only the most salient features from a large amount of data, or has to deal with a relative
paucity of information about the measured system, or is after system response data driven by signals
that are inherently stochastic, including noise.

35No valid Fourier transform exists for random signals that do not have a well-de�ned phase structure. Rather, only the signal
square, proportional to its power, may have a valid distribution. See the discussion about the power spectral density in �3.5.3.
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3.5.3 Statistical signal processing II: Stationarity

Arguably, the most important assumption that has been routinely invoked in the study of stochastic
processes has been the one of stationarity. A strict-sense stationary process is characterized by
time-shift invariance of the ensemble,

xi(t) → xi(t+ τ) = xi(t) (48)

so that the mean of x(t) is unchanged by the time shift, lag, or delay τ . In wide-sense stationary
processes, higher-order statistics Wn are independent of the absolute time point at which they are
sampled or calculated and only depend on the relative di�erences between times of measurement, so

Wn(t1, t2) =Wn(τ) (49)

with τ = t2 − t1. Most importantly, it applies to the primary tool for identifying periodicities in
any kind of process�the autocorrelation function�which compares the process to a delayed version
of itself. For the ensemble x(t) belonging to a certain stationary process, it is de�ned as the time
average

Rxx(τ) = lim
T→∞

1

2T

∫ T

−T

x∗(t)x(t+ τ)dt (50)

which is also equal to the ensemble average when the process is stationary and ergodic, de�ned
so that every realization of the ensemble carries the same statistical properties of the process as a
whole,

Rxx(τ) =

∫ ∞

−∞
x∗(t)x(t+ τ)dt (51)

Rxx is a function of the time delay τ = t2−t1 between two di�erent time points of the process. When
the time delay corresponds to a periodicity of the ensemble, Rxx(τ) peaks. From the de�nition of
frequency (Eq. 1), periodicity peaks should also correspond to frequencies in the reciprocal domain.
Indeed, according to theWiener�Khintchine theorem (Wiener, 1930; Khintchine, 1934)36 the Fourier
transform of the autocorrelation of a stationary process is the Fourier transform of its power spectrum
(or power spectral density) Sxx(ω)

Sxx(ω) =
1

2π

∫ ∞

−∞
Rxx(τ)e

−iωτdτ (52)

The power spectrum itself is a real function and may be de�ned directly from the square of the
complex Fourier spectrum, as appears in Plancharel's theorem (Eq. 42)

Sxx(ω) = |X(ω)|2 (53)

This quantity has major practical value in applications where the phase response is of secondary
importance. The inverse transform to the Wiener�Khintchine applies as well

Rxx(τ) =

∫ ∞

−∞
Sxx(ω)e

iωτdω (54)

Just as in the deterministic case (Eq. 42), integrating either the autocorrelation or the power spectral
density over the entire domain, yields the total power contained in the process. Furthermore, the
power bounded within a particular bandwidth is obtained by integrating Sxx(ω) over that bandwidth
(and hence it is a density function). However, even when the bandwidth is very narrow, the mean
frequency that is associated with its center may not correspond to an individual frequency of any
particular sample that forms the ensemble. The reciprocation of this is that the phase of an individual
sample cannot be determined from Sxx either, as all phase information is discarded in its calculation
(Wiener, 1930, pp. 129�130). This stems from the loss of the exact timing of the individual samples
that constitute the ensemble.

A critical example of these ideas is the characterization of white noise. This type of noise
is an idealized stochastic normal process that describes important physical phenomena, such as
thermal noise in conductors (Johnson�Nyquist noise), caused by the current �uctuations generated

36The proof of the theorem was already sketched by Einstein (1914) and appears to have been informally in use in the decades
before (Gardner, 1987).
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by the random movement of free electrons in the conductor (Johnson, 1928; Nyquist, 1928). For a
conductor with a frequency-independent resistance R, the power spectral density function is constant
at low frequencies (f < 1010 Hz), which corresponds to a Dirac-delta-function autocorrelation (e.g.,
Middleton, 1996 / 1960, pp. 467�488)

Sxx(ω) = 4kBT0R Rxx(τ) = 2kBT0R · δ(τ) (55)

where kB = 1.38 · 10−23 J/K is Boltzmann constant and T0 is the temperature of the conductor at
equilibrium.

The strict attribution of stationarity to a process is an idealization, as it implies that the un-
derlying dynamics is in equilibrium or is at least stable with respect to forces and �uxes that act
upon it from the environment. In many cases, stationarity implies conservation of energy, when
the physical system is completely closed to interactions with the external environment (Landau and
Lifshitz, 1980, pp. 15�16). Despite the idealization, it has been remarkably e�ective in modeling to
assume stationarity in the analysis of various phenomena that do not appear to be in equilibrium,
including in processes that might appear to violate stationarity on some time scales, but exhibit it
over relevant sample durations.

3.5.4 Statistical signal processing III: Nonstationarity

Nonstationary versions of all these functions exist as well, although not in as much use as their
stationary counterparts. Here the autocorrelation depends explicitly on the two absolute time points
t1 and t2, rather than on their relative di�erence. It leads to interaction between frequencies in the
power spectrum Sxx(ω1, ω2) (Bendat and Piersol, 2011, pp. 442�448). For a random nonstationary
process x(t),

Sxx(ω1, ω2) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
Rxx(t1, t2)e

−i(ω1t1−ω2t2)dt1dt2 (56)

With the inverse giving the autocorrelation function

Rxx(t1, t2) =

∫ ∞

−∞

∫ ∞

−∞
Sxx(ω1, ω2)e

−i(ω1t1−ω2t2)dω1dω2 (57)

In that case, the stationary process formulation can be shown to be a special case of the much
more general nonstationary process formulation, where there is no interaction between frequencies.
Note that even in the analysis of nonstationary systems and processes, whose transient nature
complicates any statistical analysis, it is generally attempted to decompose the samples to stationary
and nonstationary components, so that at least part of the process analysis can be simpli�ed through
locally analyzing it as stationary. See also comment in �3.4.7.

3.5.5 Statistical signal processing IV: Discussion

Returning to the discussion about the dimensions of Reality, it may not serve any purpose to keep the
absolute time or assign a time axis to the progression of particular samples of the stationary ensemble,
but only parametrically relate to the periodicities at which they are likely to oscillate, on average37.
Despite the loss of �ne details of the process due to averaging, patterns that are characterized by
relatively low frequencies can emerge from such analyses. All in all, whether because of the observed
system or data, or due to the mathematical methods themselves, the statistical approach inherently
incorporates a degree of uncertainty, which results in inevitable indeterminism that cannot yield the
same speci�c timing details that a strictly deterministic analysis can.

The statistical approach to spectral analysis does not o�er a di�erent de�nition of frequency
than the deterministic approach38. However, it is common to describe stochastic processes using the
concept of power spectrum, where it is only meaningful to speak about the energy contained within
a certain bandwidth. Thus, for a �nite (discrete) frequency to exist as in fully deterministic cases,

37Note the resemblance to the parametric nature of time in autonomous deterministic dynamical systems, which entails time-
translation invariance.

38It should be emphasized that the notion of (relative) frequency that is used in standard (frequentist) statistics (e.g., Kendall,
1945) is generally not the same as frequency in physics, despite occasional convergence in meaning. Relative frequency relates
to the occurrence of some observation relatively to an independent parameter�not necessarily time�that re�ects the underlying
probability distribution in the population (e.g., the frequency of people in the population who wear capes). The one thing that is
common in both usages of the term, though, is that in both cases the frequency measure is abstracted from time (at least whenever
the probability distribution is itself time invariant).
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it is approximated by a delta-function spectral density. The power spectrum is a key descriptor that
is interwoven with the idea of periodicity, but is generally de�ned over an ensemble rather than over
a particular signal. Nevertheless, the same relations (here, Eqs. 50, 51, 53, 54, 56, and 57) apply
just as well to deterministic signals as they do to ensembles of signals, which o�ers much �exibility
in analysis.

The above overview underlines three points that are pertinent to the broader discussion exploring
the possible role of frequency as an independent dimension of Reality. First, the time coordinate,
which is con�ated with the periodicity parameter in the deterministic Fourier transform formalism
(�3.4.3), refers strictly to the periodicity of the signal within the statistical approach and power spec-
trum framework. We note that a constant DC signal, which is mapped with the Fourier transform
to a delta-function peak at ω = 0, does not have a well-de�ned value of its autocorrelation function
(Eq. 50). This coincides with the above discussion about the categorically ill-de�ned notion of zero
frequency (�3.4.2 and �3.4.3). Second, there exist some systems and processes�idealized as they
may be (through stationarity)�that are well-characterized using statistical processes in which time
is not a dimension, but only a parameter. Third, one of the main problems that was highlighted
in the deterministic frequency overview was that the Fourier integrals require deterministic knowl-
edge of the remote past and future of the system (or in�nite bandwidth). The statistical approach
is obviously indeterministic, but the notion and assumption of stationarity implies an underlying
probability distribution that is unvarying, which in idealized cases also extends to the remote past
and future as the problem dictates. Nevertheless, the statistical invariance in itself, as well as the
idea that a distribution can be estimated and measured, sneaks in a deterministic component to this
otherwise stochastic, indeterministic perspective.

3.5.6 Time windowing

By far, the most important analytical step in curtailing the in�nitude associated with the fully
deterministic and time-invariant Fourier transform is the application of windowing, �rst introduced
by Lord Rayleigh (1912). A time window is a real function that limits the duration of the time
signal, so that it is forced to zero outside of a well-de�ned time interval. It weights the contributions
of the signal at di�erent times in the non-zero portion and completely suppresses any remote past
and future contributions. Typical examples among dozens of available windows are the rectangular
window, the triangular window, and the cosine square window (i.e., half a period of cosine square
function). The windowed signal itself has a modi�ed spectrum that is the convolution of the full
spectrum with the Fourier transform of the window function (see examples in Fig. 14)39.

The most typical application of time windowing is signal analysis in time frames�short seg-
ments of the complete signal�each of which has its own time-localized spectrum, which may not
necessarily be time-varying in itself (Welch, 1967). This procedure produces a two-dimensional
time�frequency analysis grid of the signal (see Fig. 15). Most familiarly, this is the underlying
procedure in the spectrogram (Potter, 1945; see Fig. 15) and in the short-time Fourier transform
(e.g., Cohen, 1989). Concatenating the di�erent time frames captures the spectral changes, even
though each time frame has a constant time-invariant spectrum (made of time-independent fre-
quency components) that is computed at lower precision due to the limited window duration�each
time frame is constrained by its own uncertainty principle that is valid for its modi�ed duration
and bandwidth (Cohen, 1995, pp. 44�52). Apparent changes in the frequency content of the system
can be gathered from the changes between the short-time spectra over consecutive time frames. In
contrast, analyzing the entire time signal using a single Fourier transform would have contained the
same amount of data, but at a much higher spectral resolution that would have not enabled us to
intuitively appreciate the time-varying nature of the underlying dynamics, because of the unvarying
nature of the Fourier frequencies. For example, compare the three spectrograms in Fig. 15 to their
respective long-term spectra in the bottom right corner of the �gure.

Time windowing is the basis for all time�frequency analysis methods, where signals are taken
as joint probability distributions, or energy density functions, in both time and frequency (Gabor,
1946; Page, 1952). In this approach, the signal energy density is de�ned in time and frequency
p(t, ω), so that the fractional energy in each time�frequency grid point of duration ∆t = t2 − t1 and
bandwidth ∆ω = ω2 − ω1 is (Cohen, 1995, p. 82�92)

p(t, ω)∆t∆ω (58)

39In the context of optics and spatial signal analysis, analogous concepts to time windowing are aperture and pupil functions
and apodization. These functions are usually de�ned in two dimensions and are not always real.
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Figure 14: Examples of three basic time windows (left column, solid blue) and their equivalent spectral
windows (power spectrum using Fourier transform; middle column, solid blue). A harmonic signal is
windowed using the three windows (left column; dash�dot gray) and its FFT spectrum of both the un-
windowed version (in red) and windowed one (dash�dot gray) are plotted on the right column, which
was obtained through convolution of the spectral window and the signal. The original input signal to all
windows has �ve harmonics x(t) =

∑5
n=1 cos(nωt+

2π
n
), with ω = 6.66π/T where T = 1 s is the duration

of all windows. All windows are set to 0 at |t| > T/2 and their support runs at |t| ≤ T/2. The rectangular
window (top row) is de�ned as w(t) = 1 and its spectrum is W (ω) = T sinc(ωT/2). The triangular
(Bartlett) window (middle row) is w(t) = 1 − 2|t/T | and its spectrum is W (ω) = T sinc(ωT/4)/2.
The Hann (cosine square) window (bottom row) is w(t) = cos2(πt/T ) and its spectrum is W (ω) =
T sin(ωT/2)/

[
ωT (1− ω2T 2/4π2)

]
(Shin and Hammond, 2008, pp. 94�100). Large di�erences can be

seen in the frequency content of the output signals that were processed with the di�erent time windows.
Note that even the un-windowed spectra of the original signals on the right (in red) su�er from some
broadening, due to the �nite signal duration and resolution of the FFT algorithm.

By convention, the probability density function p(t, ω) is normalized, so that the total energy�the
integral over the expression 58�is set to unity. The most familiar time�frequency distribution of
this kind is the Wigner�Ville distribution (Wigner, 1932; Ville, 1948).

Statistically oriented approaches strive to obtain a meaningful power spectrum�normally a long-
term stationary measure�within nonstationary processes by various manipulations that can be
thought of as conceptually related to time windowing. For example, in the running transform of
Page (1952), the domain of the Fourier integral is limited between −∞ and t, so it only depends
on the signal's past but not on its future. In another approach, the evolutionary spectrum features
periodic processes that are amplitude modulated with a peak at around t, which produces an e�ect
similar to time-dependent �ltering. It results in a local autocorrelation estimate, which is still
physically meaningful and almost stationary in the vicinity of t (Priestley, 1981, pp. 821�855). For
example, a frame-based autocorrelation algorithm (e�ectively nonstationary) combined with proper
windowing functions and sampling interpolation can be used to estimate the fundamental frequency
of speech (Boersma, 1993).

Time windowing is as far as it is possible to apply the traditional, parametric frequency de�nition
to nonstationary signal analysis without making the frequency explicitly time dependent.
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Figure 15: Examples of three nonstationary acoustic signals and their spectrograms, which are a visual-
ization of their short-time Fourier transform. The warmer the color of the time�frequency bin is, the more
energy it has. The number of frequency bins and the Hann time-window overlap between processed signal
frames was optimized for enhanced overall time�frequency resolution. A. Female vocals singing a long
�Love�. Each frame comprised N = 2048 samples with 50% overlap between the samples of consecutive
frames. The timbre of the voice is determined (also) by the fundamental frequency (the lowest curve)
and its harmonics (the parallel curves above it), which move together up and down the musical scale to
produce the melody. B. Male speech saying �That's what I believe, I mean, I am... but I'm...� (N = 2048
samples; 50% overlap). Here, the fundamental frequency is lower and has many more audible harmonics,
some of which are emphasized by the natural �ltering of the larynx and mouth cavity (formants). At
high frequencies, the sound production tends to be noise-like (turbulent) and a deterministic frequency
may not exist�only a statistical description of the signal. C. A vibraslap sound�a musical rattle that
produces a periodic noise-like sound. The periods can be distinctly seen along the time axis, whereas any
�pitchiness� of the instrument is much less distinct, as it exhibits a very coarse harmonic structure along
the y-axis (N = 256 samples; 25% overlap). D. The long-term Fourier transforms of the three signals in
A�C, computed using the fast Fourier transform (FFT) with N = 2048. It is evident that the temporal
structure of the signals is not (immediately) visible in this way, although the same information should be
contained in these spectra, ideally (perhaps using a higher N).

3.5.7 Instantaneous frequency I: De�nitions

The �nal stop in the process of decisively di�erentiating between frequency and time may have been
the explicit introduction of time-dependent frequency. Although it was originally introduced as an
ad-hoc engineering quantity in radio communication, and despite several associated paradoxes and
issues, it is indispensable in communication and electronic engineering and has become a central
concept in time�frequency analysis over the century of its existence.

Instantaneous frequency40 is de�ned as the time derivative of the phase function θ(t) (Carson,
1922)

ω(t) =
dθ(t)

dt
f(t) =

1

2π

dθ(t)

dt
(59)

with ω(t) being the instantaneous angular frequency and f(t) the instantaneous frequency41. There-
fore, in the example of sinusoidal FM (Eq. 46), the instantaneous frequency is ωc +mωm cos(ωmt),
whereas for a standard (unmodulated) sinusoidal signal it is simply ω = ωc. The general FM signal

40The synonymous term time-localized frequency has appeared in recent literature.
41The term �instantaneous frequency� was used informally already by Brillouin (1914) to designate the derivative of the phase.

It was used to describe the initial transient portions of a wave�its forerunners�when the wave propagates in an anomalous
dispersive medium, before the wave group arrives at group velocity, which generally coincides with the signal velocity.
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thus takes the form (Carson and Fry, 1937)

x(t) = a exp

[
i

(
ωct+m

∫ t

−∞
ω(τ)dτ

)]
(60)

in which the argument of the complex exponential is its instantaneous phase. For example, see Fig.
16 (left) for the instantaneous frequency of a linear FM (up chirp).

In the probabilistic framework of the signal as a two-dimensional joint probability distribution,
the instantaneous frequency is the �rst frequency moment of p(t, ω)

⟨ω⟩t =
1

p(t)

∫
ωp(t, ω)dω (61)

where p(t) is the marginal distribution of the signal with respect to time. This de�nition entails
that the instantaneous frequency is the local frequency average of the signal at time frame ∆t (Fig.
16, left and middle). When the signal is stationary, then the local average is equal to the global
average, which is then identical to the classical de�nition of frequency (see Fig. 2 C).

Another de�nition of the instantaneous frequency that is often invoked is directly derivable from
the analytic signal�a complex representation of the time signal, whose real part is equal to (half)
the measured signal and its spectrum does not contain any negative frequencies (Gabor, 1946). Due
to the symmetry properties of the Fourier transform, the real and imaginary parts of the analytic
signal are related through

z(t) = x(t) + iH[x(t)] (62)

where the operator H denotes the Hilbert transform, which is de�ned as

H[x(t)] ≡ 1

π
P
∫ ∞

−∞

x(t′)

t− t′
dt′ (63)

The integral is evaluated using the Cauchy principal value (denoted by P) at t′ = t. For a rigorous
derivation of the analytic signal, see, for example, Mandel and Wolf (1995, pp. 92�97).

There are many advantages for using the analytic signal in time�frequency analysis, where it has
become a key tool, along with the Hilbert transform (Vakman and Va��nshte��n, 1977; Cohen, 1995).
One of the conveniences in employing the analytic signal is the ability to represent signals in polar
form

z(t) = a(t)eiφ(t) (64)

where a(t) represents instantaneous amplitude and φ(t) is the instantaneous phase of the signal. De-
pending on the context, both may count as forms of modulation whenever it is possible to de�ne a
stationary carrier around which the instantaneous variations occur (see Fig. 2 H). The instantaneous
frequency can be obtained, therefore, directly from this expression, by di�erentiating the argument
(the unwrapped phase) according to Eq. 59. For example, see Fig. 16 (middle). Amplitude modu-
lation can be factored out as a low-frequency variation around the carrier a(t), which may have its
own modulation spectrum that is more conveniently treated separately of the carrier spectrum. If
the phase or frequency modulation is also factored out along with the amplitude, then together they
constitute complex modulation term (referred to as AM�FM in modern time�frequency techniques;
e.g., Sharma et al., 2017), which can be employed as a general method of mathematically represent-
ing and decomposing arbitrary signals. This decomposition holds either for narrowband signals with
a single carrier or broadband signals with multiple carriers, each of which is individually modulated
(see Fig. 2 I).

3.5.8 Instantaneous frequency II: Issues

By its very de�nition, the instantaneous frequency is time dependent and thus any suggestion that
it is equivalent to time itself would be logically incoherent. Nevertheless, there are several issues
that arise with the de�nition of the instantaneous frequency and its interpretation, which have
contributed to its less than universal adoption and somewhat unclear theoretical status.

The �rst class of issues with instantaneous frequency relates to the clash with the traditional
concept of frequency in physics and the lack of intuition that it garners to complex signals. Already
in its introduction, Carson (1922) noted that the notion of variable or instantaneous frequency is
di�cult to reconcile with our physical intuition of what frequency means. Van der Pol (1946) also
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Figure 16: Examples of the estimated instantaneous frequencies of two acoustic signals. Left: The �rst
signal is a linear frequency modulation chirp, of the form of s(t) = exp(2πft+ d

π
t2) with f = 600 Hz and

slope d = 1000 Hz/s. Using a spectrogram (N = 2048, 50% overlap), its instantaneous frequency is blurred
both in time and in frequency (color plot). The direct estimation of the instantaneous frequency using the
Hilbert transform produces a sharp curve (in black), which directly overlaps the spectrogram. Middle

and Right: The second signal is taken from the female vocals of Fig. 15 A, where the fundamental
frequency was roughly picked using a band-pass �lter (fourth-order Butterworth bandpass �lter centered
at 500 Hz with quality factor Q = 3.33). Once again, the colored spectrogram shows the smeared trend,
whose center corresponds to the instantaneous frequency, which was also calculated using the Hilbert
transform (in black). However, the latter produces very rapid excursions from the mean, which makes it
di�cult to interpret and be certain of. On the right, an alternative employment of the Hilbert transform
is applied to the same �ltered signal using the Hilbert-Huang transform�a popular applied method to
compute the instantaneous frequency of di�erent modes in arbitrary broadband signals (Huang et al.,
1998). Unlike the standard Hilbert transform, the instantaneous frequency in this plot is also weighted
by the instantaneous amplitude, so the e�ect of the extremities, which are prominent in the middle plot,
is signi�cantly reduced.

underlined the unintuitive nature of the instantaneous frequency compared to the classical frequency
concept. As a solution, he analogized it to nonuniform angular motion from classical mechanics,
where the angular velocity ω(t) is determined in an identical way to the instantaneous frequency, by
di�erentiating the phase function.

The second class of issues with the instantaneous frequency are those of mathematical inconsis-
tency and uniqueness when applying the particular de�nition of Eq. 59 in arbitrary cases. Shekel
(1953) strongly argued against the usage of instantaneous frequency, at least in its standard de�-
nition, since it is not unique for a given signal and its usage is both paradoxical and inconsistent.
Mandel (1974) distinguished between the classical de�nition of frequency as in�nitely periodic and
that of the mean frequency of a narrowband signal. He emphasized that the instantaneous frequency
as the derivative of the phase may produce values that do not actually appear in the measured
(Fourier) spectrum. He went as far as to suggest that the two quantities should not be both thought
of as frequency, since it produces an unfortunate ambiguity in our analytical understanding. Di�-
culties arise also when dealing with broadband signals (for example, see Fig. 2 I), which are best
expressed as a sum of narrowband signals42, but may not be amenable to a unique decomposition at
that (Boashash, 1992; Sandoval and De Leon, 2018). Even then, the instantaneous frequency may
give rise to out-of-bandwidth frequencies, or to negative frequencies even after they were eliminated
from the spectrum, and be dependent on the signal remote past and future (Cohen, 1995, p. 40�41).
Some of these issues may be a result of the mathematical formalism related to the analytic signal
itself (Vakman and Va��nshte��n, 1977), as there is usually a persistent ambiguity regarding a unique
representation of the signal, with respect to the allocation of signal variations to the instantaneous
amplitude or to the instantaneous phase and frequency (Sandoval and De Leon, 2018). Some of these
challenges make the estimation and interpretation of the instantaneous frequency of real-world, ar-
bitrary signals (of the kind of Fig. 2 I) nontrivial. Di�erent methods in time�frequency analysis
and signal processing wrestle with this problem, as is illustrated in the example of Fig. 16 (middle,
right).

42There is no clear-cut de�nition for a narrowband signal, although it is understood that the modulated carrier and envelope
are relatively well-con�ned to be around one center frequency. In particular, it means that the envelope itself, which generally has
its own spectrum, is well-con�ned to low frequencies that are much lower than the carrier, so the two spectra�the modulation and
carrier�do not breach one another (Bedrosian, 1963).
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3.5.9 Instantaneous frequency III: Signi�cance

All in all, the concept of instantaneous frequency has not made it into any mainstream signal
processing or physics curricula. While applied researchers might still be occasionally grappling
with the intricacies of the concept, it is typically omitted from the introduction to the topic of
periodic phenomena and harmonic analysis. Its appearances in physics may have been limited to
speci�c problems that tend to be either nonlinear (e.g., Whitham, 1999; Huang et al., 1999)43 or
manifestly modulatory (e.g., Mandel, 1974). It is therefore not featured in any standard introduction
to physics, as the Fourier analysis and classical periodicity are�i.e., in the solution of standard
di�erential equations, in the derivation of solution to various physical problems, or in standard
signal analysis and processing (�3.4). This implies that the very idea of a time-dependent frequency
remains relatively esoteric in mainstream science, despite a prominent role in some communication
and electronic engineering applications (see below).

The exception to all this has been the central role that both instantaneous phase and frequency
occupy in the study of the nonlinear dynamics of synchronization phenomena in di�erent �elds.
Synchronization is de�ned as �an adjustment of rhythms of oscillating objects due to their weak
interaction� (Pikovsky et al., 2001, p. 8). In the generic setup of this problem, each oscillator is
autonomous�it contains its own energy source�and its oscillations are time independent, as in the
simple harmonic oscillator examples above. However, when two such oscillators are coupled and
the di�erence between their natural frequencies is not too large, their frequencies become gradually
detuned until they synchronize. The original discovery of this phenomenon was by Huygens (1665 /
2001), who invented the pendulum clock, and reported that when two swinging pendula hang from
the same wooden beam, they synchronize.

To study this rich and complex type of oscillations, it has been instrumental to model them using
instantaneous phase and frequency, which often appear explicitly in nonlinear di�erential equation
models of the phase coordinate and its derivatives. Perhaps the best known example of major
practical use of synchronization is the phase-locked loop (PLL) circuit, which is found in countless
many electronic receiver systems, among others, and allows for perfect locking to an arbitrary
transmission or a clock signal in a given communication channel (Viterbi, 1959). The PLL contains
a local oscillator, a low-pass �lter, and a phase detector (a nonlinear circuit component whose
output is proportional to the product of the received and local oscillations), and it is connected
using a feedback loop, which is essential for the cycle-by-cycle tracking of the external signal by the
local oscillator. This system is also sometimes studied within control theory, where the involvement
of feedback in the design is a universal design feature of closed-loop systems (Abramovitch, 2003).
The feedback allows for real-time tuning and error correction toward a speci�ed system response to
arbitrary inputs and conditions, by returning part of the output to the input. The common element
in all these systems is that they are geared for working in real time�usually around a well-modeled
steady-state operation. In general, the knowledge about the past and the future of the signals
is immaterial, whereas the proximate behavior within a narrow time window around the present
moment is critical to assess its function and performance. Modeling these systems using methods in
which the spectrum is strictly time independent, or even smeared due to windowing and statistical
averaging, is therefore likely to be self-defeating, whereas the availability of instantaneous quantities
is indispensable in analysis.

3.6 Interim discussion

The above review of the concept of frequency loosely followed the historical relaxation of the as-
sumptions that have classically constrained the applicability of the original de�nition of frequency
to strictly periodic oscillations. This has eventually led to the analysis of arbitrary waveforms and
signals, including aperiodic ones, using tools and concepts that were developed with periodicity in
mind. As frequency is calculated from the time signal periodicity, it is inherently intertwined with
time, to the point that the two can seem as one and the same�two reciprocal or conjugate quanti-
ties that encompass their own domains. According to traditional thinking, the time and frequency
domains are complementary and e�ectively contain the same information, only in di�erent forms.

What the above review has attempted to prove, though, is that frequency cannot be considered
only dependent on the period and it is also not equivalent to time. In its simplest parametric
de�nition, the period and frequency are always dependent on additional non-temporal parameters.

43For a short review of select appearances of instantaneous frequency in the form of chirps in physics, biology, and engineering,
see Flandrin (2018, pp. 9�20).
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In more advanced formulations, a time-independent frequency entails a completely deterministic
worldview, which is analytically impractical and epistemically fantastic. Knowledge of the remote
past and future also characterizes the statistical approach to signals, which strongly favors working
with parametric time and idealized stationarity. With the addition of the Fourier transform to the
harmonic analytic toolbox, it has become possible to dispense with strict periodicity, using a one-
to-one map between the periodicity axis to that of the time dimension. It has given us access to
frequency as a continuous variable, but has also given rise to a potential con�ation between time and
frequency, or rather, a con�ation between time and periodicity. In modern time�frequency analysis,
however, a clear, upfront distinction is made between stationary and nonstationary processes, which
explicitly makes the time�frequency modeling two dimensional. This is also where the various
paradoxes, constraints, and lacunae in the transition between the time and frequency domains are
highlighted, whereas a similar, explicit recognition that frequency can be independent of time has
not made it into physics or philosophy (see �2.3).

The implications of frequency being independent of both time and space and the possibility that
it is a dimension of Reality in its own right are analyzed in the next sections. It should be clari�ed,
however, what we mean by frequency, given the barrage of de�nitions, nuances, and analytical
methods that were mentioned above, which have not yet converged to a universally agreed upon and
concise de�nition. While ideally the instantaneous frequency reduces to the parametric frequency
and Fourier spectra in stationary cases, stationarity is rarely met in practice. Furthermore, there is
ambiguity with respect to the choice of signal representation, which means that the instantaneous
frequency is dependent on the method used to extract it and assumptions behind it. While this is
certainly not encouraging when one attempts to grapple with the basic meaning of this concept, we
can live with this ambiguity for now and suggest a more qualitative and general de�nition instead:

De�nition 1 Frequency is a quantity in inverse-time units that is used to abstract patterns of time
dependence in arbitrary variables using periodic functions. In its most primitive form, it is limited
to the description of cyclical, perfectly repetitive dependence we call periodicity44.

As a measure of convenience, we also include time independence and call it zero frequency, despite
its abuse of the idea of periodicity. More sophisticated mathematics enables us to use the same
cyclical patterns to emulate aperiodic time dependence, without giving up periodicity and its valuable
associated tools. Descriptions pertain to approximate periodicity also fall under this de�nition, by
using concepts of probability, statistics, and noise, as applied to ensembles measured over a long
time. Here patterns indeed repeat, but their exact repetition instantiation may be unpredictable.
Instantaneous frequency is often tied to a channel�a central frequency or a carrier�but within
this average range there may be no need to commit to exact periodicity, and hence, to repeated
patterns. On the other conceptual extreme, we sometimes care about instantaneous deviations from
periodicity that can be described using instantaneous frequency�a quantity that allows for much
more precise time dependent speci�cation of arbitrary time signals, but at the cost of lost insight
about the overall signal evolution and, occasionally, murky uniqueness conditions. In this realm, it
is debatable whether frequency describes the patterns in time, or rather, time describes the patterns
in frequency.

Our rather loose de�nition of frequency shall be adequate to further explore the fundamental
question put forth in this work: should frequency in some or all of its di�erent forms be taken
as an additional dimension of Reality? In simple systems, all frequencies are constant and all
associated de�nitions neatly converge. However, if we do not subscribe to a wholly deterministic
view of Reality�or admit that we do not always have access to all the knowledge that is required
to analyze a problem (�A.1)�we may have to accept that such neatness applies only to a subset of
systems that are encountered in the real world, whereas in other situations a more elusive notion of
time-dependent frequency must be at play.

4 Frequency and general properties of the dimensions of
(perceived) reality

The analysis in the previous section has attempted to establish that, at least in some cases, frequency
can be thought of as a variable that is di�erent from time, despite being tightly interwoven with it.

44The de�nition is made speci�c for temporal frequency and time, but a completely analogous de�nition would be correct with
spatial frequency and space.
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Property Space Time Frequency

Mandatory coordinates Yes. *Nonlocality may be taken to violate it,
in case of quantum entanglement. **Relativistic
e�ects con�ne the meaningful coordinates to the
light cone of the inertial system on which we
travel.

Yes, depending on the level of
analysis

Movement In any direction, contin-
uous

Only forward, continu-
ous

Backward and forward, jumps
are allowed, depending on the
de�nition

Collisions and interactions With intersecting coor-
dinates, or overlapping
�elds

With co-occuring events When the (carrier) frequencies
are nearly the same; interference

Mathematical independence Yes Yes Partially time-dependent. It is
down to the uncertainty principle
in conservative systems. In non-
conservative systems it has some
independence from time.

Scalability Yes Yes Yes, but usually interdependent
of space and time.

Modulability Yes Yes Yes
Invariance typicality Yes Yes Limited
Tangibility Yes Indirectly More than time, but less than

space
Sensory association Vision, touch Hearing Hearing and color vision (tem-

poral frequencies), vision (spa-
tial frequencies), touch (tempo-
ral and spatial frequencies)

Table 1: A summary of the nine properties explored in �4.1 and how they apply to the space, time, and
arguably, frequency dimensions.

Physically and mathematically, this implies that frequency corresponds to at least one more degree
of freedom in the dynamic system. Perceptually, frequency is detected through di�erent dedicated
receptors in several sensory modalities, including vision, hearing, and touch, where it gives rise to
percepts that are distinct from time and space. The perception associated with physical frequency
is also not readily related to the �how often?� question that is classically associated with the simple
de�nition of the frequency as the reciprocal of period.

We would like to go further in the exploration now by asking if the supposed frequency math-
ematical and perceptual degree of freedom may also be cast as an additional dimension of Reality
that is on equal footing with space and time. In order to do that, it will be instructive to elucidate
what properties the four dimensions of Reality that are in consensus have that may be generalizable.
The following may not be an exhaustive list of properties, but it aims to capture the most key ones
that can be applied mathematically, physically, perceptually, and conceptually. Each property listed
is explained in terms of space and time and then analyzed also with respect to frequency.

4.1 Nine properties of the known dimensions of reality

The analysis below primarily pertains to a Newtonian conception of Euclidean space and time,
which is largely in line with our phenomenological, sensory, and perceptual version of Reality. While
taken as a starting point for each property explored, in the extreme cases of very small and very
large or fast physics, we have to consult with quantum mechanics and relativity theory, respectively,
which can signi�cantly complicate the generalization of some of these phenomenological properties.
Nevertheless, the properties listed below are usually general enough to hold at all scales, in spite of
occasional strange e�ects associated with them at the extremes.

When scrutinizing frequency against these general properties, we shall use two primary types of
arguments: 1. Straightforward application of frequency to the logic of the known dimensions. 2. A
fortiori arguments about the nature of frequency, given the peculiarity of time and the fact that it
has already been widely (even if not universally) accepted to be a fundamental dimension of Reality.

The list of dimensional properties is summarized in Table 1.

4.1.1 Mandatory coordinates

Space and time The most fundamental property of space and time, as we phenomenologically
perceive them, is that nothing physical (we know of) exists outside of them. In other words, all
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elements of matter and energy can be associated with a speci�c region in space and interval in time.
This is the same for all actions and events that take place in speci�c locations and moments. Infor-
mation, which is less tangible, is also physical and must be stored somewhere (Landauer, 1996). The
location and duration of all these things can be therefore represented using particular coordinates�
either points in space and moments in time�or using zones de�ned by coordinates�regions in space
and durations in time that are occupied by continuous objects and events.

According to the classical Newtonian point of view, there is a distinction between relative and
absolute time and space (Newton, 1687 / 1999, De�nition 8, Scholium). Habitually, we reference
time that is external to our own body�following the motion of moving bodies�that gives rise to a
relative and approximate measure of time. However, there exists absolute and true time that is in
uniform �ow and does not depend on anything external to it. Similarly for space: it is immovable,
homogenous, and absolute and does not require any external reference, although we can talk about
motion relative to it.

Both the quantum and relativistic points of view signi�cantly complicate the validity of this
classical conception of space and time. Quantum physics is characterized by various nonlocal e�ects,
which entail the dependence of a localized measurable quantity on something that occurs in remote,
noncontiguous points in space. However, even the negation of classical space and time dependence
is still logically de�ned through the very concepts of space and time, so it is di�cult to altogether
eliminate these dimensions by considering nonlocal e�ects. See further analysis in �8.

On the other extreme, both special and general relativity theories advise us that there is no
meaning for absolute coordinates, given the impossibility to have an agreed upon �now� moment
between moving objects at velocities approaching the speed of light. The very concept of �now�
loses its intuitive meaning, because space and time cannot be separated and everything exists in a
four-dimensional spacetime. The speed of light is invariant in all systems, but spacetime depends on
the system's own velocity. However, the choice of an inertial reference frame is arbitrary as the laws
of physics are identical in all of them according to the principle of relativity45. According to general
relativity, spacetime does not exist independently of matter and the gravitational �eld that is formed
as a result (Einstein, 1954). However, if we entertain the idea that spacetime has been given rise to
with a particular metric46, then we nevertheless must use some coordinates�relative, ad-hoc, local
or others�to describe the physics of all moving objects. Here, the best that we can do is to con�ne
our relative coordinate system to the light cone on which our inertial system travels, in order to
retain its meaningfulness, which would otherwise be lost between non-intersecting light cones47. In
large-scale precise time measurements the time coordinates of di�erent reference frames of interest
are typically referenced to common astronomical events that form agreed-upon points in time, which
serve as absolute markers that are only valid for the selected coordinate system (Audoin and Guinot,
2001, pp. 16�37). In spite of this, while undoubtedly troubling, these conceptual limitations on the
very meaning of having a common coordinate system are acceptable for the phenomenological and
perceptual perspectives in the present context (but see �9.9.1).

It is possible to abstract certain processes and models from this binding spacetime framework
(for example, in pure mathematics and statistical analysis), or from time only (by setting it as a
parameter). Despite these mathematical representations, they do not necessarily entail that anything
can exist outside of spacetime, or at least outside of 3D space. Once an arbitrary reference point in
space and time is chosen, every object and event may be associated with coordinates, or a region
within spacetime, to within some degree of uncertainty. In analysis, the mandatory coordinate
property of the dimensions has been used to express the dynamical equations of all mechanical,
electromagnetic, and quantum systems, which are formulated using the observed functions and their
derivatives in space and time.

Frequency Can frequency be considered a mandatory coordinate for any element of matter or
energy? A di�erent way to ask this question is whether there exists anything in the universe that
does not vibrate or oscillate, or that cannot be associated with a frequency or a spectrum.

In macroscopic systems, object frequencies can be associated with rotations around axes in three
dimensions or with vibrations along the axes. Rotations are often modeled in mechanics as occupying

45It has been suggested that there is a preferred reference frame which is determined by the small anisotropy of the cosmic
background radiation (Land and Magueijo, 2005). However, the choice may still be a matter of convenience for the observer�to
work in a reference frame within which the cosmic background radiation is isotropic�and is not an absolute one (Melia, 2022).

46A metric is the mathematical function that de�nes distance in spacetime, which is di�erent between classical (Euclidean)
space, special relativity with spacetime in Minkowski metric, and general relativity with curved spacetime.

47That is, physical systems that have drifted so far apart in spacetime that they may never be able to meet again.
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their own three degrees of freedom, apart from the standard three dimensions, and all together they
may be considered the generalized coordinates of the system in a mathematical �con�guration space�
(e.g., Goldstein et al., 2014).

On the quantum level, all particles are associated with particular frequencies given by two basic
relations that are universally applicable: the Planck relation for photons

E = hf = ℏω (65)

where h = 6.626 · 10−34 J · s is the Planck constant and ℏ = h/2π = 1.054 · 10−34 J · s · rad−1; and,
the de Broglie wavelength for matter waves

p = ℏk (66)

where k is its wavenumber k = 2π/λ, and p is the momentum of the particle moving at group velocity.
For quantum objects as small as diatomic molecules there are additional oscillatory quantities that
are analogous to those found in macroscopic motion, whose corresponding line spectra predominantly
depend on contributions from the quantum vibrational and rotational energy levels.

In relativistic physics, frequency is generally a latent degree of freedom. It may be made explicit
in dispersive media, through the speed of light that is a constant (frequency-independent) only in
vacuum where c = ω/k, but is generally frequency-dependent in all other media as k = k(ω). Just as
in classical mechanics, time measurement in relativistic systems still employs frequency-based clocks,
whose periods are themselves subjected to relativistic transformations between frames, which have
to be taken into account in large-scale measurements (Audoin and Guinot, 2001, pp. 16�37).

The generalized notion of frequency a�orded by the Fourier transform entails that even aperiodic
structures can be expressed using periodic functions. It also associates constant, unvarying functions
with zero frequency. Problematic as it may be (�3.4.2), we can invoke this classical framework to
attach frequency coordinates (values or regions from the Fourier spectrum) to all matter and energy
distributions. Uncertainty and limits to deterministic knowledge would then ensure that it is at least
partially independent of the time coordinate. Most generally, the notion of instantaneous frequency
(�3.5.7) can be used to describe time-varying functions, where the frequency itself may be changing
nonstationarily. This may be especially handy in a local sense that does not appeal to deterministic
knowledge of the associated spectrum.

Perceptually, all of our modalities that interface with the external environment are frequency
dependent, either directly through the sensory organ �lters (vision, hearing, touch, balance) or
indirectly in all other senses, including those that may be non-spectral (olfaction, gustation, pain,
etc.). An indirect frequency sensation can be attributed to any sense once we apply time�frequency
analytical tools to the functions that describe the stimuli or their sensed response. For example,
taste is not normally associated with frequency, and yet the sensation of sweetness as a function of
the spatial-temporal concentration of sugar on the tongue can be characterized as a time function
(Travers and Norgren, 1989; Iannilli et al., 2014), which is generically amenable to time�frequency
analysis. This frequency-dependence�likely an aperiodic one�may be more suitable to express the
modulation domain of the signal rather than a carrier frequency per se.

In summary, there is no di�culty to assign a frequency coordinate to any physical variable that is
characterized by space and time. In the simplest cases, the frequency is either reduced to a constant
parameter, or is assigned the 0 Hz value, without loss of generality.

4.1.2 Movement

Space and time The basic dynamic property of space is that material objects and radiation of
any kind can move about the geometry spanned by the three spatial dimensions, as long as the
path is contiguous (i.e., without jumps48). As for time, movement appears to be both contiguous
and restricted to one direction�only from past to future�despite numerous works of �ction that
dispensed with this limitation (Gleick, 2016), beginning with Wells (1895). This produces the
fundamental relationship between cause and e�ect, where the former must precede the latter in
order to comply with our understanding of Reality (Poincaré, 1913 / 1976). However, at high
velocities, the relative speed in which there is movement to the future does appear to vary between
observers moving at di�erent velocities than the moving object they observe. The relativistic �proper
time� of the moving object�its own clock that is di�erent than the observer's clock�captures this
di�erence.

48Note that even the hypothetical wormholes of the general theory of relativity only allow for apparent jumps in Euclidean space
due to extreme local features in spacetime topology produced by its non-Euclidean metric (e.g., Morris et al., 1988).
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Frequency What can the meaning be of �movement in frequency�? �Moving about� in frequency
is qualitatively di�erent from moving in the spatial dimensions and is unlike the unidirectional
movement in time. The answer to this question depends on the frequency de�nition that is being
looked at. The Fourier spectrum is by de�nition time invariant�each frequency component in the
spectrum is in�nitely long and can be thought of as inertial if taken in isolation (with no apparent
cancellations by other frequencies). The totality of (in�nitely) many such inertial components gives
rise to dense spectra that can appear as frequency-varying in the time domain (Fig. 12). Despite
its mathematical correctness, this solution seems to be missing the point. A more insightful vantage
point may be to look at the general decomposition of signals to carrier and envelope terms (Eq.
64; see example in Fig. 2 H). In the simplest of cases, there is a high-frequency carrier, or a mean
frequency, which remains �xed and all spectral changes in time can be associated with the slow-
varying complex envelope around the carrier. But this decomposition is not unique and it may be
di�cult to pinpoint as for where the change lies�is the normal mode (associated with the carrier)
being changed, or only the force that impacts it (associated with the envelope)? More complex
systems contain multiple normal modes (i.e., frequency components or carriers), which tend to have
an even more ambiguous decomposition (e.g., Fig. 2 I). These systems are generally not continuous
in spectrum, which is concentrated around the carriers and exhibit �spectral holes� between them.
Movement in frequency in these cases may be complex and not uniform across all modes, so multiple
trajectories in the frequency dimension may be required to describe it. Despite this marked ambiguity
and high degree of complexity, there is no conceptual di�culty in associating spectral changes with
particular frequency components, which may then appear to be moving like objects in space, at least
locally.

It is perhaps instructive to make a distinction between measurable spectral changes that are iner-
tial versus those that require energy transfer into or out of the system. This is because time�frequency
analysis alone may not be able to distinguish between the two without additional information about
the system and its boundary conditions. For example, the classical Doppler shift e�ect can be
measured as frequency modulation of radiated light or sound by an observer relative to a moving
source, even if both observer and source are inertial in their own systems. For the static observer,
the moving object may well count as entering its otherwise static system and injecting energy into
it. If the system is taken to enclose both observer and source at all distances, then the total energy
is constant and the entire movement can show in the time-invariant Fourier spectrum as numerous
spectral lines, as in linear frequency modulation, for example (Fig. 12; see � 3.5.1 regarding the
inclusion of all forces in the problem).

In another instructive example, if we return to Van Der Pol's analogy between the instantaneous
frequency de�nition and angular velocity�both being the derivative of a phase function with respect
to time (Van der Pol, 1946; see � 3.5.8)�then the spectral interpretation of the time-dependent
motion of a planet in an elliptical orbit around a star (i.e., with variable angular velocity) may
be a puzzling case, since there is no net energy transfer there between the star and the planet
and conservation of energy is maintained by instantaneously varying radial and angular velocities
(Goldstein et al., 2014, pp. 70�127)49. Therefore, in this case, the inertial decomposition o�ered
by the Fourier analysis may be much more intuitive and correct, as any apparent modulation in
the observation is fully accounted for by all the observable forces, all of which are conservative.
Therefore, we may choose to not register any movement in frequency in this system.

Unlike movement in space and time, frequency jumps may be possible (i.e., between two frequen-
cies f1 ̸= f2) without having to sweep across all the values in between the two. It is the standard
observation in the spectrum of quantum transitions between energy states, although a recent study
suggests that the transitions are of �nite time duration and they follow a deterministic spatial path
(Minev et al., 2019)50. Macroscopically, frequency jumps are possible in every modality when a
generator is swapped or modulated quickly (e.g., a loudspeaker may produce two well-separated
tones with no detectable sweep or non-tonal noise between them).

In summary, spectral movement is possible and common and is unrestricted in its direction.
Frequency jumps appear to be just as common, unlike jumps that are prohibited in the spatial and
temporal dimensions.

49It is not customary to look at the rotation spectrum of planets or talk about their instantaneous frequency, but rather about
their average periods and time-dependent angular velocities. However, in the case of the solar system, the various periods associated
with the sun, moon, and Earth form the basis for timekeeping and dating, so in that sense, these periods are not entirely di�erent
than those provided by man-made clocks, where referring to the clock frequency is customary.

50However, no time�frequency measurements were reported in that study. See �A.2 for a more detailed discussion.
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4.1.3 Collisions and interactions

Space and time For objects and �elds that overlap in their coordinates or are positioned within
reach of a certain far �eld, it is expected to observe some kind of interaction (object�object, object�
�eld, or �eld��eld). Depending on the speci�cs, these include attraction and repulsion (scattering),
collisions, deformations, phase transformations, chemical and nuclear reactions, and others.

Frequency Interference between two waves is observed when their carrier frequencies are either
identical or very close (it is a given that the waves overlap in space and time). There is some
associative resemblance here to interaction between rigid objects in three dimensions: interference
may be thought of as an extension of the concept of collision into the spectral dimension, where
the impact depends on the frequency (as well as phase and amplitude) di�erence between the waves
and the �nal interference product may not resemble the input waves, constituting an interaction
e�ect. This aspect of the 5D representation that includes frequency was alluded to by Wiener and
Struik (1928), who suggested that relativistic wave coherence (i.e., cross-correlation of two waves
at �nearly the same frequency�) could be explained more readily through the addition of an extra
phase dimension to the quantum wave functions, in line with the 5D theories of Kaluza (1921) and
Klein (1926).

More complex interactions between frequencies in di�erent modalities may be possible in the
context of special phenomena, such as the acousto-optic e�ect, or the piezoelectric e�ect. Unlike
interference, these interactions generally lead to modulation and energy transformation between
waves, so they are observable at a much broader range of frequencies than interference, as long as
the interacting waveforms overlap over the same spatial and temporal coordinates.

4.1.4 Mathematical independence

Space and time Mathematically, quantities that take up their own dimensions cannot be ex-
pressed using other dimensional quantities alone. Thus, each dimension holds some information
that is not found in the other dimensions. Realistically, however, quantities that manifest within
the spatial and temporal dimensions are often interdependent, so (for point objects and quantities)
there may be fewer degrees of freedom than dimensions, due to various constraints that tie the di-
mensional dependencies together. For example, in certain mechanical problems (e.g., in the central
force problem) this enables the parametrization of the trajectory using time�e�ectively eliminating
one variable / coordinate / dimension from the solution.

Frequency When it comes to frequency, its interdependence with time is very high in conservative
systems, but even there it is not total, as was argued throughout �3. It is not possible to arbitrarily
specify a signal both in time and frequency without some constraints applying. The uncertainty
principle is one such constraint that is most evident with very narrow distributions in time (du-
ration) or frequency (bandwidth) (� 3.4.6). Cohen (1995, pp. 127�128) discusses the concept of
signal representability (or realizability), where although arbitrary two-dimensional time�frequency
distributions can be mathematically speci�ed, they may not correspond to any realizable signals in
actuality.

Another fundamental physical constraint ties the relation between the temporal and spatial fre-
quencies for a particular medium. This goes back to dispersion�the dependence of the wave velocity
in the medium on frequency (�3.1.3)�a constant in vacuum for electromagnetic radiation, nearly
constant for light frequencies in air, but variable in most other conditions. Notably, audio-frequency
sound wave velocity at standard atmospheric conditions is nearly independent of frequency (dis-
persionless) as well, at least for short distances and relatively low frequencies (Vigran, 2009, pp.
122�124). In all other media, some dispersion should be assumed for all types of wave propagation
(Brillouin, 1960). The dispersion relations of Eqs. 16 and 17 are de�ned by medium parameters
such as material composition, density, and structure. In some regions those properties are time
dependent as well. This makes the dimensions interdependent in a complex way, possibly leading to
the number of degrees of freedom (e.g., per particle) to be smaller than the number of dimensions.
This is visually summarized in Fig. 17, titled somewhat bombastically �the frequency accessibil-
ity paradox,� with the intent to underscore that frequency (be it a dimension or other) cannot be
completely disentangled from time and space.
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Figure 17: The frequency accessibility paradox in classical and quantum systems illustrates the minimal
constraints that apply to the �ve quantities in all physical systems: space, time, and frequency. More
constraints may apply to further reduce the degrees of freedom. In the case of quantum systems, the
temporal frequency of photons is proportional to the energy (Eq. 65) and the spatial frequency of matter
waves to the momentum (Eq. 66), while independence implies that the quantum operators associated
with these quantities (as observables) commute, while uncertainty implies they do not commute.

4.1.5 Scalability

Space and time Objects both in space and in time are scalable. There is neither a mathematical
nor a conceptual di�culty to stretch or compress them either spatially or temporally, although
it is not always physically and practically feasible. The fabric of spacetime itself seems to be
continuous, so that scaling objects within it does not lead to odd discretization e�ects, at least not
on a macroscopic level of observation. Also, for every intent and purpose, both space and time are
of the same size as (or they de�ne the size of) the universe itself, so in practice one does not run into
a ceiling e�ect as a result of overstretching objects in spacetime (i.e., an object will never be larger
than the universe that contains it). On the quantum level, discretization e�ects (and subsequent
limitations on observations) of the order of the Planck constant�the Planck length lp ≈ 1.616 ·10−35

m and the Planck time tp ≈ 5.390 · 10−44 s�have been theorized (Planck, 1899; Peres and Rosen,
1960; Mead, 1964; Tomilin, 1999). If correct, these would lead to respective discretization e�ects on
scaling, and speci�cally to �oor e�ects for hypothetical smaller geometries.

Frequency Macroscopic frequency is scalable, depending on how it is generated. Mathematically,
the frequency range may be in�nite and real, so there are no minimum or maximum values that it
can take. Physically, though, the frequencies are sometimes de�ned to be strictly non-negative (see
Footnote 25). Additionally, there may be an upper bound to how high the frequency can be. In
vibrational systems, the spectrum becomes compressed if the spatial and temporal dimensions of
the system are stretched (and vice versa�a compressed or stretched spectrum suggests a respective
change in the spatial and temporal dimensions). Here, frequency is constrained by the other dimen-
sions, yet in order to be fully determined it depends on additional extra-dimensional parameters of
the system (e.g., medium density, elastic properties). Note that to the extent that the modulation
and carrier frequency ranges can be distinguished from one another, they are usually associated with
distinct functions of space and time, and hence with a distinct spectra that may not be indepen-
dently scalable�all depending on the spatial and temporal sources of the carrier and modulation
domain functions. On the quantum level, the energy states of bounded quantum systems (unlike
free particles) are generally determined by combinations of constants and integers, which are not
as malleable as macroscopic parameters are. Thus, free scaling is generally unavailable here due to
discretization. A continuous frequency scale from a discrete frequency spectrum is then obtained
through di�erent broadening e�ects that are applicable to larger systems.

In summary, macroscopic frequency is scalable, but in a way that is generally interdependent
on the spatial and temporal scaling properties of the system. On the quantum scale, energy level
discretization tends to limit the scope of frequency scalability.

4.1.6 Modulability

Space and time Every force or parameter that is associated with the dynamics of a wave (or a
signal) may be spatially and / or temporally varied through modulation. In general, since the wave
is de�ned over space and time, modulation over either one of the spatial or the temporal dimensions
would necessarily have an e�ect on the other dimension(s).
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Frequency Frequency may be directly modulated, as is commonly done in radio communication,
acoustics, and music, among many other domains. For instance, di�erent musical instruments
employ various methods of modulating their pitch either continuously or discretely, to produce
certain timbral, melodic, and harmonic movements in the music. In hearing research, it is common
to measure the perceptual response to spectro-temporal modulation that is de�ned over both the
temporal and the spectral dimensions of the signal (Aertsen et al., 1980b,a). In vision and optics,
changes of the carrier frequency51 of the optical objects generally lead to changes in perceived color,
as is encoded by the visual system (e.g., Land and McCann, 1971; Land, 1977). Changes in the
spatial frequency content of the optical object relate to how its coarse or �ne details appear, as
can be predicted from the modulation transfer function of the imaging system, that is the eye
(Goodman, 2017). The combination of both temporal and spatial modulation has been studied as
spatio-temporal modulation transfer functions in vision (Van Nes et al., 1967).

All in all, disentangling the di�erent dimensional contributions of any modulation may be some-
what contrived, since in practice, few (if any) changes to the signal can be made to manifest only
one-dimensionally.

4.1.7 Invariance typicality

Space and time As the substrate of physical existence, space tends to be remarkably toler-
ant to any change in the absolute coordinates (homogeneity) and to the direction of movement
(isotropy). A similar property is the tolerance to the changes in absolute time coordinates (sta-
tionarity, � 3.5.3). Put di�erently, numerous phenomena appear to be both time-invariant and
space-invariant (translation-invariant). E�ects of memory and nonlinearity locally disrupt these in-
variances, but most events and systems seem to be indi�erent to where they are positioned in the
universe, as long as all the relative relationships to the various surrounding media, �elds, and forces
are equal between the positions.

Frequency There are many situations in which frequency does not have a direct e�ect on the wave
dynamics, which is captured by the geometrical approximation that is regularly used in both optics
and acoustics (Born et al., 2003; Morse and Bolt, 1944). In this case, the only frequency e�ects, such
as applying to the velocity in the medium (dispersion), amplitude in the medium (absorption), or to
surface re�ectance, would be those dictated by the medium properties. Here the wave phase at the
image plane may be neglected as it is the intensity that is being detected�a power spectrum type
of image (�3.5.3), rather than an amplitude image that retains a deterministic phase structure. This
well-describes situations in which the wavelength is much shorter than the relevant spatial boundaries
of the system. For instance, the incident sound between the orchestra to the audience, as well as
the various re�ections from other surfaces in the space, constitute relevant spatial distances in the
acoustical design of concert halls, which are much larger than the longest wavelengths produced by
the majority of musical instruments. Spectral invariance may also apply to musical melodies, which
may be transposed to a di�erent scale or register�a relative change in frequencies. In this case,
it would still retain its melodic identity, which is determined by the relative intervals between the
notes in the melody, and their respective durations. Perceptually, though, transposition only applies
as long as it is within the melodic range of human hearing (Attneave and Olson, 1971; Pressnitzer
et al., 2001).

Spectral invariance appears to break down more often in common situations than do spatial and
temporal invariances. A strong spectral dependence is found with various interaction e�ects that
are exclusive for certain frequencies or wavelengths, which in analogy could be compared to very
crowded regions in space, or a large density of events (in time). For example, molecular spectroscopy
is concentrated on mid-infrared frequency with the Raman �ngerprint region, loosely de�ned to be
at 1300�900 cm−1 (e.g., Fiore and Pellerito, 2021). Such a molecular spectrum cannot be thought
of as relative, since its absolute frequencies determine the very identity of the molecule.

In conclusion, while spectral invariance can characterize many classical systems, parts of the
electromagnetic spectrum have unique interactions that render many systems spectral variant. Also,
as all sensory systems are bandlimited, any spectrum invariance within a particular modality is of
limited extent.

51Within the visual range, it is typical to refer to the wavelength of the light waves, rather than to their frequencies. Most
references to frequency in vision relate not to the temporal frequency of the carrier, but rather to spatial frequencies, which are
used for the description of the geometry of the optical object.
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To the above seven properties, we shall add two additional ones that are more narrowly related
to our perceptual experience as humans and possibly to at least some of our non-human animal
relatives.

4.1.8 Tangibility

Space and time Tangibility refers primarily to the property of objects that can be perceived by
touch�material objects that evoke tactile sensations when touched. Somewhat more ambiguously,
tangibility also refers to the property of being perceived by the senses. It is de�ned as: �real and
not imaginary; able to be shown, touched, or experienced �, or �a real thing that exists in a physical
way� (Cambridge Dictionary52). Or, �capable of being perceived especially by the sense of touch:
palpable�, or �substantially real: material �, or �capable of being precisely identi�ed or realized by the
mind � (Merriam-Webster Dictionary53).

A dimensional perspective on the concept of tangibility would ascribe it to the space that the
objects occupy. Arguably, solids are more tangible than liquids, whereas gases may be altogether
intangible, especially if they are colorless and odorless. Also microscopic objects the size of microbes
or smaller are not amenable to touch, and macroscopic objects that are too large can be touched, but
their full size cannot be truly appreciated (like a wall, a mountain, or a planet). In all other cases, the
information combined from the touch and visual modalities is often consistent and complementary,
so what looks tangible is indeed tangible, and what feels tangible is generally visible.

In contrast to the spatial attribute of the objects, the time dimension is not directly tangible�
only indirectly, through the understanding of dynamics and cause and e�ect and how objects change
as a result. Objects that continually change in time may be perceived as lacking in tangibility if
their properties cannot be con�dently pinned down. Purely auditory objects are also intangible if
they are not accompanied by inputs from other modalities (e.g., Schra�enberger and van der Heide,
2015).

Frequency Is frequency tangible? Yes and no. If tangibility relates exclusively to touch, then
the e�ects of frequency are certainly felt across space and time. For example, the spatial frequency
spectrum of objects relates to their contour and texture. Their temporal frequency content relates
to felt vibrations upon touching. Touching an object dynamically (stroking, rubbing, hitting, etc.)
produces a stimulus that combines its spatial and temporal frequencies. Sound is not tangible per
se, but has no meaning without frequency or pitch (even if perceived as pitch-less, as in the case of
white noise). And in vision, frequency gives us color, which is not a property that can be felt by
touch either. All of these are no less tangible than the time dimension, but they are less tangible
than the spatial dimensions, which are inseparable from our senses of positioning and movement of
objects.

4.1.9 Sensory association

Space and time Spatial coordinates are most immediately associated with vision and touch (see
Fig. 1), which elicit the e�ect of tangibility. Time is much more abstract than space and we become
conscious of it as a supra-modal percept that is not peripherally detected with any one sense. The
passage of time has been most strongly linked with hearing (Weisser, 2021, p. 6), yet stimuli to all
senses have indispensable temporal as well as spatial attributes, which become mandatory in eliciting
the actual perceptions and the resultant information that maps the objects in the environment (Fig.
1).

Frequency As was noted in �2.1, both vision and hearing are strongly associated with frequency.
Hearing is primarily associated with temporal frequencies�the frequencies that determine pitch,
timbre, harmony, and melody. Temporal frequencies in hearing can double up both in the carrier
and in the modulation domains, which can sometimes have complex interrelationships. Slow mod-
ulatory frequencies determine level changes, rhythm, beating between adjacent tones, etc. Vision,

52https://dictionary.cambridge.org/dictionary/english/tangible, accessed 30.11.2023.
53https://www.merriam-webster.com/dictionary/tangible, accessed 30.11.2023.

https://dictionary.cambridge.org/dictionary/english/tangible
https://www.merriam-webster.com/dictionary/tangible
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in contradistinction, is more clearly split between temporal-carrier and spatial-modulation frequen-
cies. Colors�the percepts stemming from the broad tuning of photoreceptors to three (in standard
human vision) di�erent ranges of the electromagnetic spectrum�are associated with the temporal
frequencies of the light spectrum from the objects (usually discussed in terms of wavelengths), fac-
tored as carrier frequencies. The objects themselves are often de�ned using spatial frequencies, which
produce the go-to modulation spectrum when visual images are analyzed and processed (Du�eux,
1946 / 1983; Goodman, 2017). As was discussed in �4.1.8, the object surface can be thought of
as a particular con�guration of spatial frequencies, which when dynamically moved, transform to
temporal frequencies. If the object internally vibrates, then the vibrational frequency is temporal
and associated with the carrier domain, whereas the textural frequencies more readily belong to the
modulation domain. Although olfactory detection does not seem to be based on spectral principles
(see Footnote 3), as long as di�erent substances can be uniquely identi�ed using their vibrational
spectra, their spectrum becomes a relevant parameter in objectively characterizing olfactory stimuli.
Other senses are more narrowly designed to target very speci�c types of objects, where frequency
may not be a key attribute.

4.2 Frequency as a dimensional property of Reality

Ultimately, the above analysis merely supplements the one in the previous section (�3), given that we
only have two kinds of dimensions from which to infer the properties of a general physical dimension,
which may be insu�cient. Space and time do not behave identically, and frequency too does not
exactly follow these general properties in an identical manner to either space or time. The alternative
possibility�that frequency is an important quantity that is not a dimension in its own right�may
be considered in case that frequency markedly stands out with respect to one or more of the nine
properties we listed.

Three dimensional properties listed above may be considered odd when applied to frequency:
movement (�4.1.2), mathematical independence (�4.1.4), and invariance typicality (�4.1.7). Move-
ment in frequency stands out, because unlike space and time, it appears that jumping between
frequencies in a discontinuous way is possible. This may be due to quantum e�ects, but can also
apply to classical systems, depending on the de�nition of the frequency source. However, time too is
subjected to a unique rule of movement�it can move in a single direction only�at least according
to current knowledge. Thus, this may not be a signi�cant oddity: each dimension type has its own
unique movement rules.

Frequency also behaves di�erently with respect to its mathematical independence. As was argued
throughout �3, it is an elusive thing to demonstrate, mainly because of the interdependence that
frequency has with time. In many physical models, frequency is absent and can only be made explicit
through the inclusion of dispersion or other spectral dependences of the parameters. This is di�erent
from space and time, whose roles tend to be mathematically explicit. Once again, it may not be a
signi�cant di�erence in its own right to disqualify frequency from being a dimension, but rather a
unique feature that it has, which may have historically led to its elusiveness.

The last property that stands out�that of systems often not being frequency-invariant�may be
the most interesting one, because it re�ects many of the properties that make our reality the way it
is. These spectral �islands� correspond to phenomena that are speci�c to particles, atoms, molecules,
object sizes and shapes, duration and progression of events, etc. In many cases, our senses are tuned
to receive information at these frequencies and not in others, in a way that ends up being perceived
uniquely (as color, sound, touch, etc.). A shift in these frequencies cannot be made without a�ecting
the entire cascade of physical, chemical, and biological �lters that depend on the absolute values
of these frequencies. Whether this interaction between frequency and (perceived) reality is a cause
for disqualifying frequency from the dimensional count may, in the end, be a philosophical choice.
We argue that this is what makes frequency special, as it ultimately leads to answers to the �What�
question, just as space specializes in answering the �Where� and time in the �When� questions.

5 Synthesis

The case for frequency as a mandatory dimension of Reality has been argued for above. While the
idea of including a complex concept such as frequency in the standard count of dimensions may
come across as an abstract imposition, it was shown that logically, perceptually, physically, and
mathematically, excluding frequency would be inconsistent with important applications in modern
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science and engineering, as well as situations of ordinary perceptual experience, where instantaneous
spectral events are key. According to the analysis in �3 and �4, the exclusion of frequency as a
dimension may only be logically justi�ed if either

1. Time is rejected from the standard count of the obligatory dimensions of Reality, so that there
is no inconsistency between how we treat time and frequency, or

2. The universe is fully deterministic with total knowledge of past and future, so that frequency
can be retained either as a parameter or as a dependent variable.

Both propositions carry substantial metaphysical weight that may not stand to reason with the
normal intuitive, phenomenological perception of Reality, or with standard physics. This does not
mean that they are impossible, but rather that they may apply in some cases, but not universally.
Alternatively, they constitute a step backwards from some of the �ndings established earlier in this
work. Namely, acceptance of either 1 or 2 would entail: dismissal of the perceptual experience of
time-dependent frequencies, no level of uncertainty exists of time signals and their associated spectra
at any scale�they exist and can be known deterministically, and rejection of the very notion that
time can be its own dimension within physics. All that said, while we may reject 1 and 2 as not
corresponding well to our standard perceptual and experiential reality, we must acknowledge that
they do represent possibilities that exist notwithstanding and may be more applicable for some
physical systems (if only through modeling), although perhaps not universally. This reasoning is
distilled into the following theorem, which is a corollary of all of the above.

Theorem 1 Only one of these three propositions can be simultaneously true:

P1. Time is not a fundamental, obligatory dimension of Reality.

P2. The universe is fully deterministic with total knowledge of past and future.

P3. Frequency is a fundamental dimension of Reality.

The three propositions may be immediately interpreted as referring to 3D, 4D, and 5D conceptual-
izations of Reality. The theorem is depicted graphically in Fig. 18.

The choice of wording in the theorem �only one can be simultaneously true� should be clari�ed
with an allusion to Einstein, Podolsky, and Rosen (1935), who stated that two quantities that are
tied through the uncertainty relations (such as quantum position and momentum) �cannot have
simultaneous reality�, which entails that observing one precludes the observation of the other. Simi-
larly, the three propositions of the theorem above are mutually exclusive, in a logical sense. But we
would like to underscore that the particular proposition that is in e�ect need not be permanent, as
might be implied by the logical relation alone. This would normally be worded by stating that �only
one of the three propositions can occur at one time�. But since the propositions themselves directly
frame the existence of time, this seems to be circular, as though the choice takes place in time but is
outside of time. The concept of simultaneity usually refers to things that happen together in time as
well. But the word �simultaneous� is also de�ned as �satis�ed by the same values of the variables54.�
Therefore, �simultaneous� seems somewhat more appropriate and less committing in this context,
although it results in this odd wording. Finally, we cannot adopt the wording of Einstein et al.
(1935) verbatim, so that �P1�P3 cannot be simultaneously real�, because then we would be talking
about a �real Reality�.

The theorem is deducible from the synthesis of the concept of frequency as was presented in
sections �3 and �4. A shorter logical proof of this theorem is as follows and others are likely possible.
In this proof we take physics and physical systems as a sample representation of Reality�and in
turn�of the universe (but see �5.1). Consult �A.1 for the Laplacian de�nition of determinism as is
used in the present work and the applicability of the Fourier integral to arbitrary problems55.

54Merriam Webster Dictionary, accessed 11.1.2024, https://www.merriam-webster.com/dictionary/simultaneous.
55The following proof depends to some extent on resolutions to a host of long-standing metaphysical questions that are far from

being universally agreed upon: the meaning and de�nition of determinism and indeterminism, their applicability for classical and
modern physics (and Reality writ large), the de�nition and existence of time, the relationship between causation and determinism,
the �niteness of the universe, the impact of observation and measurement on systems, extra dimensions of Reality, what makes
Reality, and likely several other questions. This is obviously a philosophical mine�eld, whose present Gordian-knot-style disentan-
glement is not going to be uncritically embraced by some readers. That said, I believe that it is logically sound and it is consistent
both internally and vis-à-vis the evidence gathered in the �rst half of this work, which provides a novel perspective on these age-long
questions. Furthermore, the three-pronged structure of the theorem itself can shed new light on the very same issues, if only by
accounting for the contradictory answers that have been given to many of the above questions by di�erent scholars, depending on
the context of the problem and, likely, their metaphysical persuasions.

https://www.merriam-webster.com/dictionary/simultaneous
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Figure 18: The Triangle of Reality. A graphical depiction of the three propositions of Theorem 1,
formulated with inverse statements. Each one of the three propositions corresponds to a vertex, whereby
the two adjacent sides to the vertex are true (marked with blue arrows) and the one opposite to it is false
(marked with incomplete angle bisectors in dash red).

P2. Beginning with P2, we assume determinism, so the past and the future are predictable given
the present knowledge, using physical laws, at arbitrary precision and to an arbitrary extent
in time (� A.1). This prediction should be expressible as a time function or time series of
some measurable quantity, which can then be transformed using the Fourier integral to yield a
corresponding frequency representation. The frequency representation is completely determined
by the time function, which means that frequency on its own is not independent, and thus not
a dimension.

There are two options here regarding time: it is either a parameter or a dimension. In
the former case, the absolute value of the time parameter is not important, and the system
dynamics is essentially time invariant and can be arbitrarily shifted to any point in the remote
past or future with no measurable e�ect. Now, without loss of generality, the description of
the system consists of both periodic and aperiodic components. Aperiodicity can be observed
in both �nite and in�nite time extents, as long as it is modeled over the entire time domain
(either through windowing or through a natural �windowing� of a �nite universe age) that is
required to eliminate phantom periodicity in the remote past and future (see Fig. 11). Aperiod-
icity of any kind, though, is characterized by a continuous spectrum with an in�nite frequency
bandwidth (according to the compact support paradox, �3.5.6). However, this contradicts the
non-dimensionality of frequency, because parametric frequency cannot have in�nite support
and be de�ned over continuous arbitrary values if time is parametric too. This is so since
parametric time in this context represents yardstick durations constructed from arbitrary peri-
odicity measures that are abstracted from the time domain. The periodicity axis can only have
a chance to map time if the continuous frequency domain includes zero frequency, which was
introduced for convenience in the derivation of the Fourier transform limit. But, zero frequency
is physically incoherent as long as time is parametric, because it encompasses all of time and
cannot be arbitrarily shifted forward or backward, which makes it dimensional�a contradiction
(�3.4.2). Therefore, no kind of aperiodicity can be obtained with parametric time.

Components of perfect periodicity can only occur with in�nitely-long extent of time, or else
there would be in�nitesimal indicators of aperiodicity imposed on the time function measured�
�nite duration or �nite damping (see further discussion in �A.2)�which contradicts periodicity.

We are thus left with only one option that would potentially violate P2: periodic dynamics
that persists over in�nite duration may appear to describe a deterministic Reality (a determin-

istic system) that has both time and frequency as parameters and not as dimensions. Now we
are confronted with a di�erent question: is there any physically realizable system�one that can
be considered part of Reality�that is in�nite in duration so it can admit perfect periodicity?
In order to make this system realizable, it must be completely isolated, so no external forces
whatsoever can interact with it and disrupt its perfect periodicity. This also applies to any kind
of measurement that is required to ascertain whether the periodicity is perfect. The only truly
isolated system that may count as such is the entire universe. But given that we are part of the
same universe, we must interact somehow with this periodic system to learn about its present
state in the �rst place, which was a precondition to enable determinism�it is necessary to
peek at the system for �one instant� (�A.1). That moment of interaction, however�no matter
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how short and weak�is an aperiodic event, by de�nition. Then, our interaction constitutes a
brief aperiodic disruption in the acquired time function and therefore contradicts the require-
ment that time is parametric, since the measurement introduces a unique moment that is no
longer time invariant. Alternatively, we have to give up determinism that in this case refers to
our knowledge that the isolated system is truly periodic, or to the availability of the Fourier
spectrum, which would map to P1 and not to P2.

Therefore, determinism requires dimensional time and parametric frequency.

P1. P1 was essentially demonstrated through the proof of P2 above. Another way to look at it is to
begin by assuming that time is not a dimension. This implies that the system being analyzed or
observed can be described statistically as a stationary process, for which there is no di�erence
in the choice of a reference time point, as there is no meaning to past and future�every point
is as informative as the present and no absolute moment in time is special. This directly entails
that the system is conservative and its dynamics has no beginning and will have no end. Thus,
the notion of determinism�accurately predicting the past or future according to some physical
laws�is incoherent. Frequency, if it has any meaning, relates to average periodicity patterns
that are observable along corresponding time intervals�standalone parametric durations that
are abstracted from time as a dimension that should have past and future. Thus, frequency
describes the stationary physics and is not a free variable either, and hence not a dimension.

P3. Finally, in P3, we start from frequency being an independent dimension, which means that it
can vary more or less independently with time. A fortiori, therefore, time is a dimension too.
Inasmuch as the spectrum represents the physics of a given system, it is not constant in time,
so it is only as informative as the information gathered in the present moment that de�nes it
(i.e., over a �nite time window). Therefore, unlike the P2 spectrum, it contains either limited
or no information about the remote past and future, and therefore does not correspond to a
Reality in which the remote past inevitably causes the present, which will cause the future. In
other words, di�erent pasts may have led to the present, which can in turn lead to di�erent
futures. Therefore, determinism does not apply here.

Hence, P1, P2, and P3 are mutually exclusive.
To complement this proof, we have to examine that the remaining �ve propositions that can be

formulated using time, determinism, and frequency are never true (all propositions are summarized
in the truth table of Table 2). Let us try to understand what each one of these statements entails
and why it may be impossible:

P4. Time is a dimension; determinism; frequency is a dimension�Although time and frequency
are two degrees of freedom of the system, its present behavior is completely determined by its
past and its future is predetermined. Therefore, it is possible to obtain the frequency at all
times from the predetermined time signal using the Fourier integral. But this means that the
frequency is not independent of time and hence it is not a dimension�a contradiction.

P5. Time is not a dimension; no determinism; frequency is a dimension, and,

P6. Time is not a dimension; determinism; frequency is a dimension�For this proposition and the
previous one to be true, it must be possible to continuously vary the frequency f in arbitrary
steps δf and observe a respective change in time δt. But any change in frequency must only
take place in space, if time itself is not a dimension. However, a spatial change in frequency
would make time nonuniform across space, which would contradict its non-dimensionality56.
Hence, these propositions are incoherent and the question of determinism is moot.

P7. Time is not a dimension; determinism; frequency is not a dimension�This was ruled out in
the above proof of P2.

56An equivalent statement can be made based on Whitham's wave conservation formula, which relates the change in spatial
frequency k in space and in time with ∂k

∂t
+ vg

∂k
∂x

= 0, where vg is the group velocity in the medium (Whitham, 1999). The

equivalent expression using the temporal frequency is given by ∂ω
∂t

+ vg
∂ω
∂x

= 0 (Weisser, 2021, pp. 57�59). This expression is
completely generic, as it applies to any wave whose phase function can be written in the form of ϕ = kx− ωt, where ω and k are
tied through the dispersion of the medium, so ω = ω(k) and k = k(ω) (�3.1.3). If either k or ω change as a function of space or
time, then one of the terms in the conservation equation is nonzero and must be balanced by the other. In particular, the second
expression contains the derivative of the instantaneous frequency ∂ω

∂t
, which is meaningful only if both ω and t are dimensional,

and it may be nonzero only as long as ∂ω
∂x

is nonzero too, as is implied by propositions P5 and P6. Therefore, frequency cannot be
dimensional without time being dimensional as well and we reach a contradiction.
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# t̄ D f Availability

P1 Yes No No Yes

P2 No Yes No Yes

P3 No No Yes Yes

P4 No Yes Yes No
P5 Yes No Yes No
P6 Yes Yes Yes No
P7 Yes Yes No No
P8 No No No No

Table 2: Truth table describing the di�erent available and unavailable combinations of non-dimensional
time, determinism, and dimensional frequency. The following symbols are used: t̄ � Time is not a
dimension; D � Determinism; f � Frequency is a dimension. Only P1�P3 are possible, whereas P4�P8
are never true.

P8. Time is a dimension; no determinism; frequency is not a dimension�Regardless of the degree
of knowledge about a given time signal, its respective frequency representation can never be
fully recovered from it using the Fourier transform due to indeterminism (�A.1). For this to be
true, it means that frequency re�ects a degree of freedom that is independent of time, which
contradicts its non-dimensionality. ■

Another way to break down the complex statement of Theorem 1 is to note the number of
pathways that exist for time, frequency, and determinism to take place or not, enunciating Fig. 18:

� Time is not a dimension (1 pathway)

� Determinism (1 pathway)

� Frequency is a dimension (1 pathway)

� Time is a dimension (2 pathways)

� No determinism (2 pathways; *see �5.2)

� Frequency is not a dimension (2 pathways)

Theorem 1 was derived by way of deduction and elimination, by contrasting the di�erent de�ni-
tions of frequency and how they relate to time. We employed the Laplacian de�nition of determinism
without challenging it, as it organically coincides with the underlying logic of wave physics, as well
as with both deterministic and stochastic signal processing. However, di�erent de�nitions of deter-
minism (e.g., Earman, 1986) may lead to some re�nement over how this concept was used in the
proof. Still, it should not threaten the very interrelationship between time, frequency, and deter-
minism as Theorem 1 has uncovered. While time and determinism are topics that have been often
considered in the physics and philosophy literatures, the addition of frequency into this discussion is
novel. The theorem itself, though, may be understood at di�erent levels of abstraction, with more
or less metaphysical baggage that was not originally purported at the outset of this exploration.
Nonetheless, we shall make a few cautious strides and try to unpack a few of aspects of the theorem,
before delving into concrete examples.

5.1 Choice of system: isolated, closed including losses, and open

There are at least three ways to understand Theorem 1. One way is to take it as an ontological
statement, directly pertaining to the entire universe, as long as the three concepts of time, frequency,
and determinism are employed as they are in present-day science. This understanding would have
the universe �xed on either P1, P2, or P3. If it is the latter, then the frequency dimension is not
merely a mathematical convenience, but rather a part of the physical Reality which is partially
detected by our senses, although it is largely kept hidden from us. We shall not be dealing with this
kind of interpretation directly, but only brie�y comment on it in �5.2 and revisit it in �9.8.

The second way to understand the theorem and its three propositions is less rigid and allows for
the propositions to apply in di�erent physical situations, corresponding to the three abstract systems
depicted in Fig. 13 and thus to three possible modes. P1 corresponds to the situation in Fig. 13
A, in which a system is truly isolated, so we have no access to it as such, as long as its boundary
remains intact. Without being on the inside, the best we can do is to get average quantities that
are time invariant, based on what we may a priori know that the system contains. This is another
way to say that time is not a true dimension here, because it plays no role in the dynamics, for all
we know. P2 is a closed system that includes the whole universe, as is illustrated in Fig. 13 C. It is
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fully conservative, but it is possible to de�ne loss within the system. If this system corresponds to
the whole universe, and it is known to be �nite, then it already includes everything, by de�nition:
it is impossible to include additional information (more forces, loss of energy). Hence, we have
determinism, as the past dynamics causes the present and future. The inclusion of loss mechanisms
that dissipate energy and information within the system gives meaning to time as a dimension as we
intuitively understand it, as it gives rise to dynamics that can be clearly associated with cause and
e�ect. If we breach the system boundaries (or if the universe is not isolated), we would be moving
to P3 and the open system of Fig. 13 B. This mode remains in e�ect as long as the system and its
environment retain their identities. If they are merged, or taken as a whole either analytically or in
observation, then we return to P2 (Fig. 13 C).

A third way to understand Theorem 1 is epistemological and concerns avenues to acquire knowl-
edge about the world through observation, which pertains both to scienti�c measurements and to
sensation and perception, and can be used to construct a model of Reality. The three propositions
here can be seen as di�erent methods to approach Reality�each of which requires di�erent degrees
of data availability, assumptions, computation, and, potentially, previous information. In this vein,
P1 relates to the minimum amount of assumptions and coarsest data acquisition�obtaining a time
series about which we may know little or nothing, but assume that if it varies, then it is around a
mean. This allows us to obtain a baseline statistics of the observed object. We can increase the
�delity of our measurement by interacting with the system in addition to passively observing it.
This likely includes transfer of energy that, if done right, can be accounted for and might not a�ect
the measurement. Here, �uctuations around the mean are taken as relevant information that may
have to be modeled and interacted with. We can take whatever knowledge we have about all this
and relate it to observed generators in the system, which mechanistically cause it to behave in the
way we observe that makes Reality. This is P2. We can also use this information in a P3 mode,
which ideally requires us to specify a time window and bandwidth, and then enables us to obtain a
much closer handle on any temporal variations that deviate from the stationarity assumption of P1.
Both P1 and P3 may be used to approach a P2 conception of reality, which we would like to match
with Reality�a 4D world where causation plays a role in instantiating predictability, which enables
us to exist with relative con�dence about things (see �9.7). Sometimes we can directly approach P2
based on patterns we obtain in real time that allow us to induce a behavior regarding the history
and future of the signal and its origin. But this may only be done conditionally, given that our
knowledge of the remote past and future is either limited or altogether nonexistent, which means
that any predictions about them may be prone to error (or noise).

The examples in �6 will illustrate several aspects of these interpretations.

5.2 Determinism

Determinism appears in two varieties here�explicit and implicit. Explicitly, within the epistemo-
logical interpretation of P2, there is the low-level Laplacian determinism (see �A.1) that follows
from the interdependence of frequency and time. It encompasses every event, movement, and bit of
information to have ever existed to be related to produce the time signal or observation at hand.
There are no real inputs nor outputs to such an isolated system we call the universe, because there is
nothing external to it, by its very de�nition. This inevitably leads to a predetermined future, since
the information about it is already contained in the system's past.

Implicitly, another form of determinism emerges from the theorem, if it is interpreted strictly
ontologically in a manner that entails an unyielding maintenance of the system boundaries, or
relationships with other systems that are internal or external to it. If it is an isolated system of the
form of P2, it is akin to a mini-universe of a �nite extent. As long as its boundaries are maintained,
implicit determinism is maintained, in the sense that the proposition associated with it becomes
an immutable mode of being. In other words, this sort of determinism implies an adherence to a
�xed mode rather than moving between the three modes. In this sense, an isolated system that
corresponds to P2 and remains as P2 is doubly deterministic. However, the de�nition of the system
can be tinkered with by letting its boundaries vary irregularly, which can cause a change of mode
(i.e., corresponding to P1, P2, or P3), which is an alternative avenue to relax determinism.

5.3 Indeterminism

Indeterminism appears here twice�both in P1 and in P3. Yet, as was suggested throughout the
preceding analysis, the nature of the two is fundamentally di�erent. In P1, indeterminism is associ-
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ated with probability and statistics. In this mode, all quantities are distributed around a mean and
can be characterized using correlations and moments. The predictability thereof is constrained by
the sharpness of the distribution that describes it. Given the law of large numbers, after a su�cient
number of records, we would obtain the relevant expected values of the system with diminishing
uncertainty. It does not mean that we should be able to predict the next sample with precision,
though, as the precision describes the ensemble and not its individual members. That said, we
can still form predictions about temporally proximate behavior of individual samples based on the
autocorrelation of the ensemble. However, it is a probabilistic and not a causal measure, so the
predictions can never be certain for autocorrelation that is less than unity, |Rxx| < 1. In contrast,
When we talk about the ensemble behavior in time (if observed from outside), we know how it is
going to be in the remote future and past using induction�there should be no great surprises here,
as long as the probability distribution we have is correct.

The situation is markedly di�erent in P3. Here, one �rides� or �surfs� the wave in real time,
using the instantaneous quantities and measures and the general knowledge about the associated
bandwidth and its center frequency (or set of carriers, if it is a broadband signal). This a�ords
arbitrarily precise knowledge of the immediate variations of the signal�constrained by analytical
and technical limitations�but provides no information whatsoever about the remote past and future.
Therefore, it is an antonymous kind of indeterminism to the one experienced in P1.

This form of near-determinism is reminiscent of the concept of the Lyapunov time from chaos
theory and nonlinear dynamics (e.g., Gaspard, 1998). Unstable chaotic systems are known to be
sensitive to small changes in initial conditions, which are ampli�ed to a gradually increasing error the
longer time has elapsed from the initial time. The Lyapunov time is the characteristic time beyond
which the error becomes larger than the precision of the measurement, so the system behavior may
no longer be predictable from its deterministic dynamic equations, while only general statistical
descriptions can be validly made.

A related idea regarding di�erent degrees of indeterminism is found in Popper (1965 / 1994, p.
220), who was searching for something that is neither hard determinism, nor hard indeterminism
(Emphasis in the original): �While physical determinism demands complete and in�nitely precise
physical predetermination and the absence of any exception whatever, physical indeterminism asserts
no more than that determinism is false, and that there are at least some exceptions, here or there,
to precise predetermination.�

Taking the notion of precision as key, we may amalgamate all of the above, by underscoring that
P1 describes the temporal horizons, whereas P3 describes the temporal vicinity. It stands to reason
that information gathered from both provides a picture of Reality that is closer to deterministic,
and hence, to P2 (see �9.7). Any deviation from precision in prediction of near or remote events
should result in uncertainty, error, distortion, or noise�variably depending on the context.

6 Epistemic examples

A few examples that illustrate how Theorem 1 may be applied and interpreted are sketched below.
Initially, they depict relatively mundane situations and systems, in order to demonstrate the reach
of the theorem. In all cases it is shown how a combination of P1, P2, and P3 perspectives leads to
e�ective solution of problems within these situations, often in complementary ways.

6.1 Example I: Tra�c �ow

The �rst example is deliberately basic, in order to keep it relatively relatable. It serves to distinguish
the three modes and their applicability in di�erent circumstances, although they clearly refer to the
same Reality. Note that this example bears no relation to standard analyses of tra�c �ow problems
(e.g., Lighthill and Whitham, 1955).

Let us consider a one-way single-lane busy road that is congested with heavy tra�c during peak
hours, which drops to a minimum at around midday and at night. Additionally, the tra�c depends
on the day of the week, with a drop on the weekend, and seasonally, with heavier but slower tra�c
during the winter. We would like to get a handle on the tra�c dynamics and use the data for
di�erent actions. We set a detector that can precisely record the exact time and date in which
the front bumper of every vehicle passes a certain point x0 on the road. The detector is also able
to record the rear bumper of the cars, associate them with their respective front and infer their
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instantaneous speed at point x0. We would like to estimate the variation of the air pollution�
a separately measured set of time-series data�around the road as a function of car density. To
greatly simplify the problem, it is given that there are no other roads or sources of pollution that
may contribute to the pollution level in that area.

This problem is readily solved statistically in P1. We can sample all the cars over a certain
period�say, one year�to compute the average frequency of cars on the road per unit time57. We
would then obtain a grand average over all days and hours. On top of that, we can have a �power
spectral density� statistics of cars, whose peaks re�ect the di�erent periods of high and low congestion
during the day, week, and month. Each peak will have a �bandwidth� that represents the spread
of observed frequencies that contribute to the average around that peak. From these numbers, it
should be fairly straightforward to derive a correlation model between the car frequency on the
road and the level of speci�c pollutant. The same would be true for tra�c noise level estimation,
the tendency for tra�c jams to occur, for estimating of the average number of accidents on the
road, or for computing the wear of the asphalt and the tires on the road in comparison with other
roads. When extrapolated to all of time, these measurements are assumed stationary in the sense
that the absolute time point should make no di�erence for the data observed and extracted from
this system. Some re�nement can be achieved by independently factoring contributions from daily,
weekly, monthly, and seasonal statistics that are allowed to modulate the total average car density,
in what is called cyclostationary analysis.

This frequency data, however, would be virtually useless if one wants to know at which speci�c
moment it is safe to cross the road (assuming drivers do not generally slow down when they see a
pedestrian crossing the road). Except for being able to tell when the road is busier, crossing the road
based on average rather than instantaneous frequencies of cars on the road would be, by and large,
suicidal. Therefore, in that case, one works in P3 by picking a particular temporal window that is
su�ciently long for oneself to detect a coming car and cross to the other side in one piece. When
the car density is higher, this time window is, on average, going to be shorter. Whereas, during
low tra�c hours, the time window may be almost as long as desired. The crossing individual may
be able to instantaneously estimate the oncoming car velocity in order to match their own speed
necessary to cross the road. The car velocity itself cannot tell much about the car density, but if it
is integrated over a certain duration, an instantaneous car density function may be obtained.

Finally, we may want to identify the exact time course of a particular car, whose driver leaves her
home every morning at sunrise, seven days a week, and arrives to the road exactly �ve minutes later.
Here we resort to P2. We adjust our detector to record only that one car in- and out-times at x0
and, just like in the �rst (statistical) case, obtain a spectrum with a clear spectral line corresponding
to one drive per day. But the line has some �bandwidth�, because of the seasonal oscillation in the
precise hour of sunrise, as well as some random car tra�c around the time when the driver passes
the detector, or the driver's regularity�all of which result in some arrival time uncertainty. If we
precisely measure the spectrum over, say, a month, and given a hypothetical exact periodicity of the
years, this spectrum will enable us to compute the exact time of day in which the car passes the
detector, subject to the random �uctuations in tra�c around that time and to the driver's state.
In any case, this spectrum is going to look nothing like either one of the other two spectra�it
is irrelevant to crossing the road at noon, just as it tells us nothing about the average (generic)
car frequency on the road throughout the day. However, if we repeat the measurement for each
individual car and average the result, we would get the power spectrum of P1, only with the level of
detail that may allow us to also cross the road safely, if only in hindsight. Therefore, at the limit of
full details of all car data, we get a deterministic picture of Reality, from which we can derive both
the individual car data and the ensemble averages.

6.2 Example II: Measurement of target sound pressure level with external

disturbance

Let us consider another relatively basic example, this time from bioacoustics, although suitable analo-
gies can be drawn within other �elds. Suppose we are interested in the cicada mating song, which is
produced within male choruses of genus Magicada every 13 or 17 years, periodically (Williams and

57The frequency we use here converges with the de�nition of relative frequency as is employed in frequentist statistics (see
Footnote 38). However, it is trivial to convert the measured time series to physical frequencies, if every car detected triggers a pulse
of voltage or light, for example, and is then registered by an observer, in a more similar form to other oscillatory event detection.
Clearly, though, there is no limit on how sophisticated the conversion may be between the car kinematics and dynamics to an
oscillation resembling a more readily workable signal or a wave.
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Simon, 1995). Speci�cally, we would like to examine what the very �rst song of the season sounds
like, and what its sound pressure level and spectrum are. Let us assume that we have a guesstimate
of when and where the �rst song is going to begin within the cicada habitat, and we intend to record
it using a calibrated (reference) microphone.

We can model this acoustic setup according to the (linear) wave equation, which incorporates
the positions of one source (the cicada) and one receiver (the microphone) in the inhomogeneous
term, with optional boundary conditions to account for the e�ects of the soil and tree re�ections.
We may be able to precisely estimate the level of the cicada's song at its own position using results
from this model that is �rmly embedded in a P2 mode of Reality. However, suppose also that at
the moment of the recording (observation, measurement), a loud airplane �ies over the microphone
and its broadband sound corrupts the song recording. In that case, we could consider dropping
the recording, since the airplane noise contaminates the clean recording of the cicada, leading to
poor signal-to-noise ratio. We would never consider the wave equation to be wrong, but rather the
system that it describes to be incongruent with the system in actuality at the moment of recording,
which contained two sources rather than one. Obviously, we could have used the very same wave
equation to model both the moving airplane and the cicada�including them both in a single closed
system�and it would be completely correct (neglecting nonlinearities associated with the airplane
dynamics and interaction with the atmosphere). But in all likelihood, we would have no motivation
to invest so much e�ort in this di�cult problem.

Instead, we may try to repeat the measurement when the external disturbance is gone and assume
a certain relationship between subsequent songs and the �rst one whose recording was corrupted.
For example, we can look for another cicada population, or wait another 17 years for the same
population, and try to record its �rst song. This will again lead us to a P2 mode. Or instead, we
can switch to a P1, statistical form of observation: we can record other isolate songs of the same
population (before the full chorus begins), average them, and assume that the average is identical
to the �rst one, irrespective of when they appeared and which cicada produced them. Or, we
can estimate the number of cicadas during the chorus song, record it, and make inferences about
the individual song by dividing the long-term power spectrum by the number of cicadas. Or, we
can sample di�erent airplane sounds and subtract their average power spectrum from the corrupt
recording, perhaps even using a sophisticated machine-learning or arti�cial-intelligence algorithm
tailored for this special purpose. And so on and so forth. All variations induce some form of time
invariance and deviation from a certain mean song pattern. Depending on the speci�c assumption
used as the basis for each procedure, it almost unavoidably incurs information loss of the original
recording that may have been singular and cannot be exactly reproduced.

Alternatively, the spectrum of the airplane noise may turn out to be relatively low frequency,
whereas the song may be relatively high frequency. In that fortuitous case, we may prefer to high-
pass �lter the cicada's call from the corrupt recording, containing both the airplane and the cicada
sounds (in complex cases, �ltering can become proportionately complex; Wang, 2005). If we select
an appropriate cuto� frequency, the error would be minimized, and most of the energy contained
in the song will be accounted for and yield a reasonably precise estimation of its level, as though it
was made in an acoustically isolated, airplane-free system. For all intents and purposes, the entire
solution to this problem is worked out in �ve dimensions and, arguably, in a P3-like method, which
was matched for the particular, instantaneous bandwidth and moment in time. We circumvented the
rigid application of the closed-system wave equation without sacri�cing its validity, by the addition
of noise and then removing it, however possible, through �ltering. We will report the result along
with the e�ective bandwidth that was used to obtain it, which indicates the band-limitation applied
to the cicada's song spectrum.

In practice, information gathered from all methods can be combined to reconstruct an image of
this highly localized Reality in the form of one song that appeared at one very particular moment in
time, to never repeat. All methods are at least partially correct and complement one another, but
they all rely on di�erent assumptions that incur some uncertainty on the �delity of our knowledge
about that moment. Inevitably, a certain level of noise must be acceptable, which should not impact
the validity of the model being tested, or the equation that governs it, so the notion that the system
under test is indeed acoustically isolated may be retained. The noise source could have been part
of the governing di�erential equation, if we only set the boundary of the problem di�erently and
managed to get it to correspond to the acoustic Reality in the �eld.

Replacing the cicada, airplane, and particular choice of �ltering applied to the observation, this
otherwise simple problem description can �t numerous other problems without loss of generality
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in which the noise level cannot be ignored or controlled, but the noise source itself is of no direct
interest in its own right. In most cases, though, we can semantically avoid working with an extra
dimension, simply by calling it �noise� and accepting it as an inevitable discrepancy between the
sought-after and the obtained solutions, so that a deterministic knowledge of the observed event can
only be obtained within a certain margin or error / �delity. This implies that we sacri�ce a degree
of determinism that is a�orded by di�erential equations and Fourier analysis and convert it to noise.
Reality is no less deterministic as a result, but our access to this determinism is constrained by
di�erent forms of noise58.

6.3 Example III: Radio communication

Communication engineering encompasses several domain-general methods59 on how to optimally
transmit and receive arbitrary messages between two points in space over a noisy channel. It lends
itself as a quintessential test case for Theorem 1, because these methods involve a regular theoretical
and practical employment of critical information gathered using all three modes: P1, P2, and P3.
Both transmission and reception unfold over time and both are susceptible to noise from multiple
sources picked up along every stage of the communication chain. In this context, there is a sharp
distinction between the �signal�, which is the desirable message to be communicated�what was
originally sent�and �noise�, which is the undesirable disturbance that is picked up along the way
and is processed by the same circuitry as the signal and is present at the output. While random
noise is an inevitability and cannot be altogether eliminated, a well-designed communication system
aims to minimize it and deliver an undistorted replica of the original signal (i.e., an output signal
that is identical to the input, with the exception of a linear ampli�cation factor). An assortment of
methods from mathematics, signal processing, stochastic processes, information theory, physics, and
electronic engineering is commonly deployed in the design and modeling of communication systems
to realize this goal.

In this example we focus on bandpass communication, which is the standard in long-distance
communication, and attempt to give a bird's eye view of the generic logic that guides its realization
(e.g., Couch II, 2013). The input here is an arbitrary baseband signal, which occupies a bandwidth
between zero and some cuto� frequency, B > 0, that is modulated on a carrier frequency of a
much higher frequency, fc ≫ B. The process of modulation involves a nonlinear transformation of
one of the carrier parameters (amplitude, phase, or frequency) using the baseband signal for the
transmission. An inverse operation is applied for the reception, whereupon the baseband signal is
recovered (or reconstructed). Baseband communication, in which no modulation is applied, tends to
be impractical over large distances and is not discussed here.

At every point along the receiver processing chain we can query what we know about the signal,
which is otherwise physically identical: it is what can be measured in an observed portion of space,
typically reduced to a single point, in which a continuously varying �eld energy, usually electromag-
netic, is being detected. Information about every aspect of the communication system is expressed
using one of the modes, as will be illustrated below. In all cases, the output from the detector /
receiver is a scalar time function�predominantly voltage�that can be either further processed or
in some cases sent directly to an output device (a loudspeaker, a video display, an actuator, etc.).

In general, the receiver �does not know� what signal it is going to receive, so the only way to
design for it is to statistically specify it beforehand. This is done using very general assumptions
about the probability distributions of the received noise, and combining it, at minimum, with the
detection rules for the speci�c modulation, the modulation signal bandwidth, and other elementary
parameters of the communication channel. All these are modeled as combinations of deterministic

and random processes, which result in time-invariant statistics that can guide the system design60.

58In open systems, di�erent sources of modulation normally seem as noise if measured using standard Fourier spectrum (i.e., P2)
or power spectrum (P1), but their periodic origin can be uncovered using instantaneous frequency methods, à la P3 (Rowland Adams
et al., 2023).

59By �domain-general�, it is implied that the bulk of the analysis done in communication theory is purely mathematical. The
practical constraints imposed by things such as physical wave propagation, electronic equipment, computational and signal pro-
cessing limitations are not generally part of the initial characterization of the communication process.

60The assumptions of time-invariance and stationarity do not hold for complex communication scenarios, when at least one of
the transmitter / receiver pair is in movement, or there are other variable physical conditions that restrict the stationarity. In these
cases, some deterministic components inevitably enter the channel modeling (e.g., Han et al., 2022). Even then, it is a standard
practice to identify the conditions and time intervals during which the channel can be treated as e�ectively stationary, so that a
suitable statistics can be derived based on it (e.g., Steinbauer et al., 2001; Ghazal et al., 2017; Han et al., 2022; Schwartz et al.,
1995, pp. 343�415).
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Here, the carrier is typically taken to be a stationary deterministic process that is mixed with sta-
tionary random process�noise. Similarly, the modulation signal is typically taken as a deterministic

process (it may be also mixed with indeterministic noise). Using knowledge of the modulation and
demodulation transformations, it is then possible to predict the best signal-to-noise ratio that is
attainable for a given type of communication, which may depend on frequency. In digital commu-
nication these considerations can be used to predict the bit-error rate for a particular modulation
method as a function of noise level. Various sensitivities and caveats can be �agged and alternative
methods can be compared, also based on physical feasibility. Thus, this characterization of the
communication system is fully found within the realm of P1.

Another critical characterization step of the transmission is most informatively realized in P2.
Here, the Fourier spectrum of the modulated transmission itself is directly calculable, so that the
e�ect of the modulation operation on the spectrum around the carrier frequency can be scrutinized.
The information obtained here is used in di�erent ways. For example, any type of modulation gives
rise to sidebands in the spectral vicinity of the carrier. In selecting the channel and modulation
types, it is conventionally required to avoid overlap between the sidebands and any simultaneous
adjacent transmission (either its carrier or sidebands), so that the signals will not interfere and
cause severe degradation in the quality of the attainable demodulated signal61. Another use of the
deterministic spectrum is to design alternative modulation methods that make better use of the
energy that is used for the transmission, or in the bandwidth it occupies. For instance, this can
be done by eliminating one of the sidebands, or by using quadrature modulation using the same
bandwidth62.

When it comes to the electronic circuit analysis, a combination of methods is typically employed
to �nd the voltages in the di�erent circuit nodes. Although the response may be based in some cases
on di�erential equations such as Eq. 24, it is normally reduced to algebraic equations instead, which
result in a deterministic, time-domain prediction of the voltages (and currents) for a given input
voltage and frequency (P2). When the circuit is analyzed with respect to its response to random
noise, then P1 methods are invoked again, where the power transfer function is used for both signal
and noise.

Finally, the signal that is being demodulated is represented in the time domain. It may seem
deterministic at the present moment, but there is no knowing how it is going to be in the future or
how it was in the past, so the only thing that may be known about it with any degree of certainty
is its estimated long term average power spectrum, or level distribution. But (for the person) at the
receiver's end, it is the instantaneous, nonstationary aspects of the signal that are of value rather
than its average properties. So the entire analysis of the modulation and demodulation processes
is done while preserving the temporal structure of the signal�any deviation from it would lead
to distortion. Speci�cally, when dealing with frequency modulation, it would be self-defeating to
have signal representations that exchange the instantaneous frequency with series of in�nitely long
parametric frequencies (see �3.4.7). This is true both in cases where the signal is detected using
coherent methods�by employing a local oscillator that synchronizes to the phase of the carrier
(see � 3.5.9)�or noncoherent methods, in which the modulation frequency is extracted without
synchronization (for example by directly converting it to amplitude modulation). Therefore, in the
most general sense, this part of the analysis requires a P3 perspective63.

All in all, an epistemological interpretation of Theorem 1 appears to be re�ected in the commu-
nication system design. Each one of the three modes, P1, P2, and P3 is used to illuminate another
aspect of the system and the signal that either cannot be e�ectively obtained through another mode,
or it may be downright impossible. Regardless of the mode chosen, the physical signal and the sys-
tem remain the same all along. The choice of mode becomes either a mathematical convenience or a
necessity, without which some problems may be otherwise intractable. This is strongly reminiscent
of Slepian's resolution of the bandwidth paradox, where he made a distinction between the math-
ematical tools we use to understand, characterize, and measure signals and the actual physics in
Reality that is indi�erent to these tools (Slepian, 1976; see Footnote 28).

61Once again, there are exceptions to the rule with some advanced communication systems. Spread spectrum communication
systems may incorporate digital modulation techniques with suitable coding of the messages that is designed to work despite overlap
with other channels (e.g., Proakis and Salehi, 2014, pp. 825�869).

62Quadrature modulation is the independent modulation of the two amplitudes x(t) and y(t) of the orthogonal components of
the signal s(t) when it is expressed as s(t) = x(t) cosωct− y(t) sinωct.

63It should be noted that, mathematically speaking, even strict amplitude modulation that is not continuous still gives rise to
some frequency modulation and vice versa (Picinbono, 1997). The two types of modulation cannot be completely disentangled in
the reciprocal domain, as it is the quadrature amplitudes that are statistically independent, rather than the amplitude and phase.
Nevertheless, in practical applications the modulation types are treated as independent.
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An epistemological interpretation of the theorem in the context of the communication example
leaves the question of an ontological interpretation undecided. However, we can consider a few
additional points, which circle back to our own everyday experience and may have an ontological
bent. A radio transmission unfolds over time. To the listener, the spectrum and time signal, or the
statistical description of a song that is playing in the radio now, does not provide any predictive
power for the contents and sound of the morning news show that is going to play next Monday. Also,
that song provides no information whatsoever about another song that is playing simultaneously on
another channel, is transmitted by the same equipment, and may be received by the very same
radio receiver without moving any parts, only through minute changes in the con�guration of some
bits of software and / or hardware. Physically, the carrier waves of the di�erent channels are
in superposition throughout the medium and many of the communication system parts, but the
various modulation, demodulation, and �ltering operations ultimately determine what is going to
be heard in time and in frequency. Reinstating the a fortiori argument from �5, unless we insist that
the time signal has long been predetermined and its future is fully known, considering only time but
not frequency as an independent dimension of Reality would be logically inconsistent in the context
of radio communication.

Another aspect of the theorem that is not clearly re�ected in the communication engineering
problem is whether the three modes are indeed mutually exclusive, given that they are used side-
by-side to model Reality. Short of going through speci�c models and derivations one equation at a
time, it would be di�cult to demonstrate how at each step only one mode is used at a time, despite
several hybrid steps in which deterministic and stochastic processes are used simultaneously. For
example, P1 relates to a statistical approach, which averages over time to the point that time does
not exist as an independent dimension. However, in nonstationary cases, it is common to divide
time to discrete units (e.g., frames, as was discussed in �3.5.6), where the stationarity assumption
can locally hold, or where any of the other two modes can be applied without violating the theorem
or any of the problem assumptions. This somewhat confusing nesting of local and general realities is
not inconsistent in its own right. Rather, it indicates that the theorem may apply on wildly di�erent
scales, which may include anything from the entire universe, to a microscopic region within it. For
this statement to be fully justi�ed, though, we would have to explore whether the theorem applies
to quantum problems, which relate to the smallest-scale features of Reality and constitute the most
reductive point of view about it (see �7 and �8).

6.4 Example IV: Reaction time to ambiguous words

Our �nal epistemic example is taken from the �eld of psycholinguistics and may be considered some-
what of an odd choice to bundle with the previous technical examples, as well as overly associative.
Nevertheless, it is included here both to emphasize the generality of the theorem, as well as provide
a suggestive link to other situations in which mental processes are pertinent.

The general topic relates to the putative process in the human brain called lexical access, in
which a word stored in the �mental lexicon� is matched by the brain to a word encountered in
perceived (heard) running speech. The research question of interest is what happens when the
brain encounters a word that has several di�erent meanings that share an identical pronunciation (a
homonym). A reasonable hypothesis is that ambiguities slow down lexical processing, because the
brain must select the most congruent out of several meanings. A more re�ned question is whether
the decision is facilitated when a context is available, which can indicate the correct meaning. This
question arose some interest back in the early 1980s beyond the con�nes of the psycholinguistics
�eld (notably in Fodor, 1983), because the in�uence of context seemed to be indicative of whether
the brain processes language in a bottom�up, modular way�i.e., sequentially, from the auditory /
linguistic input to the cognitive output, where each processing module in the brain is autonomous.
Alternatively, the brain also exhibits top�down processing�feedback from advanced-stage processing
that weights the early perception-related processing for incoming words�that can arguably make
disambiguation more e�cient, but may require a higher degree of neurophysiological sophistication.

Several simple, opposing processing models had been put forth and each had seemed to success-
fully account for di�erent sets of observations with homonyms, while contradicting the results from
others, suggesting that the actual brain process may be more involved than any of the models imply.
However, no clear-cut resolution that resulted in a universally accepted model has been reached. The
discussion and controversy seem to have largely �zzled out by the early 2000s, as the focus shifted to
brain imaging studies that can reveal the speci�c pathway activation during speci�c cognitive tasks,
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including linguistic ones. It is not the intention here to introduce the intricacies of this topic in any
depth, but rather to highlight its three most in�uential models and analyze them using the novel
perspective gained from theorem 1. For a recent review of the topic see Rodd (2018).

The brain is exposed to spoken language sequentially, which means that the meaning inferred from
it also unfolds over time, as more information is being communicated to the listener. The semantics
of spoken language�the meanings that individual words carry�is used to infer the overall meaning
of the sentence, in what is technically referred to as integration. When the semantics is ambiguous,
integration can be made more complicated. Ambiguity of meaning can be manifested in many ways,
but we focus only on ambiguity that is potentially present due to multiple meanings of words. The
dependent variable observed is the reaction time of listeners�test subjects who complete a certain
linguistic task. The underlying assumption is that the reaction time is dependent on the time that
is required for the brain to process the linguistic input in order to correctly execute the task. In
general, shorter reaction times imply simpler processing, whereas longer reaction times may indicate
ambiguity-related delay.

Three classical models have been put forth to account for homonym processing in di�erent tasks
(summarized in Fig. 19). Roughly speaking, we argue that the three correspond to P1, P2, and P3
and that the discrepancy between them re�ects the mutually exclusive nature of the three modes.

Figure 19: Three cartoon models of the mental process leading to the correct understanding of words
with multiple meanings while listening to speech. In all three models, a hypothetical listener perceives
the spoken words and responds to a task, which is measured by the reaction-time proxy variable. The
words are represented in the brain within a �mental lexicon� that contains the di�erent meanings. Only
the sentence context can disambiguate the sentence and select the congruent meaning. In this case, the
congruent meaning of the word bank is the less frequent one, designated with lower probability p2 < p1
and denoted with bank2. In all cases, we tacitly assume that the context is formed over time from
previous meaning integration. Top: The ordered search model goes by relative frequency of the meaning
in the language. It �rst attempts to match it and moves to the less frequent (less probable) meaning only
if the former meaning was incongruent with the context. Middle: The exhaustive access model excites
all available meanings for the word and context is used to test all of them for congruence, whereby only
the congruent meaning makes it through. Bottom: The selective access model uses the context to excite
only the congruent meaning from the lexicon.

The ordered search model (Fig. 19, top) holds that the processing time of homonyms relates
to the word meaning frequency (prevalence) in the language (Hogaboam and Perfetti, 1975). This
model assumes that the lexicon attaches a certain probability to every word meaning stored in it and
preferentially selects the most frequent one, unless it does not match the context. For example, the
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English word �bank � referring to the �nancial institution is used more frequently than �bank � that
refers to a shore of the river (Rice et al., 2019). Therefore, in a sentence such as �The man walked to
the bank.,� the former interpretation will be preferred according to this model. However, if the two
meanings have the same frequency, then both will be accessed and context will have to be used to
disambiguate them. This is a P1 kind of model, since any information about the frequency of word
meanings is taken to be stationary at the time of testing�it is abstracted from the present and is
assumed universally applicable. It is also not deterministic, but only heuristic, because there is no
guarantee that the selection according to the highest-frequency word meaning is going to hold, until
the interpretation is corroborated with the appropriate context. While it is unspeci�ed here how
the context itself may be generated, it is understood to be a separate process that is independent to
the word meaning disambiguation.

According to the exhaustive access model (Fig. 19, middle), all word meanings are simultaneously
accessed, independently of their frequency, and only later is the correct meaning selected using
the context, whereas the irrelevant meanings are discarded (Conrad, 1974; Swinney, 1979). This
model corresponds to the logic of P2 that is applied in the time domain and strictly follows the
available information in real time, without assuming anything about the context or frequency. We
can think of the ambiguous word as an input signal�a stimulus�that excites the system (the
lexicon), whose output are certain meanings, which decay more or less rapidly according to the
various excitations to the system. Figuratively, this model seems to re�ect the impulse-response
technique from dynamical system analysis, signal processing, and wave phenomena (where it is
better known as Green's function), where it is possible to uncover all the modes of vibration of
the system (see �3.1.2) by exciting it with a very short pulse (mathematically, a delta function).
Information from impulse-response measurements reveals the complete dynamics of the system (if
linear). Speci�cally, it enables us to predict which modes are going to resonate with certain input
signal frequencies. Also by analogy, this process generates some transient uncertainty (noise) due to
the associated uncertainty in the immediate time frame after the ambiguous words are encountered,
but as the irrelevant meanings decay, it leads to a deterministic decision, where the uncertainty no
longer plays a role (Onifer and Swinney, 1981).

Finally, the selective access model (Fig. 19, bottom) maintains that if a disambiguating context
is available at the time when the homonym appears, then it is used to preselect the correct meaning
(Schvaneveldt et al., 1976). Arguably, this is a P3 kind of model, because it is locally concentrated
on whatever available information there is to minimize the di�culty associated with integration.
Context, while di�cult to quantify, can be thought of as providing some guidance for where to
search for meaning, both in time and in frequency. Context forms and develops sequentially, so time
is a dimension, and the search time window is therefore distinguished. The disambiguating context
can be used to bias otherwise secondary meanings due to their low frequency, which entails a form
of �ltering (although not necessarily in a dimensional sense�it can be more simply thought of as a
parametric operation in a non-physical meaning space). As long as the context inferred by the brain
is correct, the result may be the most processing-time e�cient of the three models, but it should
require a feedback operation in processing. However, if it is incorrect, then the mistake may be more
costly, as a correction has to be produced using another method. Indeterminism here relates to the
fact that the processing implied by the model is local�it applies for a speci�c sentence and context
and may not induce predictability to other sentences in the current or other conversations.

These three models are at odds with one another. There has been supporting evidence for all three
and a number of hybrid models were proposed, which feature aspects from all three basic models
by carefully tracking the di�erence in meaning frequency of words used, as well as the contextual
information strength and quality during the listening task. Whatever information garnered by this
kind of processing model may not be readily classi�ed into one of the three modes. Nevertheless,
the three basic models and their (perhaps strictly metaphorical) mapping to the three modes can be
used to highlight two things about this example, which may be further generalized and contrasted
with previous examples. First, the three modes (models) all refer to the same Reality, but harness
di�erent assumptions and methods to correctly observe it. Second, an approximate image of Reality
may be constructed by combining information gathered by all three modes. This may refer to the
information from these modes being integrated in series or in parallel, perhaps at spatially distinct
loci. It begs the question�if elements of the three modes can be combined as they are in various
advanced disambiguation models�are they indeed mutually exclusive? For example, suppose the
internal knowledge about the meaning frequencies is indeed stationary, but its output can be biased
(�ltered) by certain contexts. In a sense, such a hybrid procedure breaks down the problem into
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smaller sub-problems, each of which is solved within a single mode. Regardless of how the process
unfolds, the lexical decision must end deterministically, though, which calls for a P2 end point64.
Therefore, reality appears to be constructed through the complementary information gathered by
the di�erent methods that are applied at di�erent time scales. This makes the mutual exclusivity
more subtle, if at all appropriate.

What we cannot know from this analysis is whether the three models and modes are fundamental
to how the brain processes external stimuli in general, or rather how we, as conscious observers or
scientists, conceptualize the brain doing so using language. There are indications, however, that
point to the former. See further discussion in �9.10.

6.5 Mode transition

Theorem 1 states that the three modes of observing Reality are mutually exclusive, but does not
say anything about the transition between the modes. Since the three modes ultimately relate to
boundary drawing of a system by an observer�a boundary that may or may not have a physical
manifestation�the transition necessarily relates to a (deliberate, imposed, or haphazard) change of
boundary between or within systems. Therefore, one direction of exploring the signi�cance of the
theorem is to consider e�ects that potentially take place in and around mode transitions, where
observational discontinuities or logical inconsistencies may arise. Six transition types are possible:
P1 to P2, P1 to P3, P2 to P1, P2 to P3, P3 to P1, and P3 to P2. Three of them are considered
below in the context of quantum mechanics.

As with the very propositions of Theorem 1, mode transitions may be understood epistemologi-
cally and / or ontologically. Invoking an epistemological point of view, a transition between modes
relates only to how we get to know something about Reality through di�erent mathematical oper-
ations and methods. So, for example, there is generally some information loss between P2 and P1,
which means that our knowledge of a certain process may su�er as a result. Alternatively, there
may be an ontological interpretation, which relates to how things are in Reality and whether they
can be reliably mapped to one of the modes, but not to another.

In the next example (�7) the line between these two interpretations is further blurred as we apply
the theorem to the measurement problem in quantum mechanics. The �nal example, of quantum
nonlocality (�8), hypothesizes an ontological validity to the theorem and to the existence of frequency
as a dimension, in order to see if it can account for the nonlocality that is the hallmark of certain
problems in theoretical and experimental quantum mechanics. The two examples also serve the
purpose of exploring how the theorem applies to simple systems, di�erent from the above examples
that all featured multilayered epistemology of engineered systems, which made it di�cult to ascertain
whether indeed no two modes ever occur simultaneously.

7 Example V: The measurement problem of quantum
mechanics

7.1 Background

Quantum mechanics is the branch of physics that deals with molecular, atomic, and subatomic
systems�the smallest physical systems in existence, as we understand the universe today. In its
century-long existence, it has been as successful as it has been enigmatic and controversial, and as
such it has occupied a central place in the imagination of physicists and enthusiasts alike. We invoke
quantum mechanics for two convergent reasons. First, we would like to use it in testing the logical
prediction from �6.5, which states that the transition between two modes can reveal a discontinuity.
This prediction may be best tested in a system reduced to its most elemental form, where the
identi�cation of modes can be relatively straightforward, in comparison with complex macroscopic
systems as were explored in �6. Second, we use the conclusions to argue that the very appearance of
the discontinuity�in this case the one entailed by the quantum measurement problem�is directly
predictable from Theorem 1.

Theorem 1 ties together three principal concepts in physics that are common to all of its branches:
frequency, time, and determinism. The relevance of the three to quantum physics is straightforward

64Ambiguity and double meaning is retained for a longer time than is implied by the above cited tasks, so a deterministic
interpretation is most generally reinforced over time.
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to demonstrate. Beginning from frequency, as was brie�y discussed in �4.1.1 (and throughout �4),
quantum mechanics has the concept of frequency at its heart. Both the Planck formula for the energy
of a photon (Eq. 65) and the de Broglie formula for the momentum of a mass (Eq. 66) relate directly
to the wave properties of all particles, namely, to their frequency�the temporal frequency to energy
and spatial frequency to momentum. Thus, by extension, all quantum energy and momentum
expressions can be ultimately related to frequency. Moreover, the reciprocal relations between
conjugate quantities through the Fourier transform are central to the theory, and they embody the
uncertainty principle, as well as the relationship between the position-space and momentum-space
representations of the quantum state.

The role of time and determinism, or the lack thereof, is also central in quantum mechanics�as in
all dynamical theories�but their exact interrelation has given rise to several conceptual conundrums
that do not appear in classical mechanics. Of key interest to us is the measurement problem, which is
one of the longest-standing open questions in quantummechanics, and arguably its most foundational
one (Wallace, 2008). It has to do with the incongruent description of the quantum system before
and after a measurement has taken place�a deterministic rule characterizes the quantum system
before a measurement, whereas a probabilistic rule accounts for the measurement outcome, as is
roughly sketched below65.

The quantum system is described by the quantum state, which contains the complete information
about its dynamics. The values of all measurable quantities (observables) can be obtained by apply-
ing Hermitian operators on the state function66. Before any measurement takes place, the quantum
system state, represented by the quantum wave function Ψ(r, t), evolves in time according to the
Schrödinger equation (Schrödinger, 1926), which contains the explicit total energy operator acting
on the wave function [

p̂2

2m
+ V̂ (r, t)

]
Ψ(r, t) = iℏ

∂

∂t
Ψ(r, t) (67)

where V̂ (r, t) is the potential energy operator that is speci�c to the problem. The operator p̂2

2m
corresponds to the kinetic energy, which is dependent on the mass m and on the momentum operator
p̂, de�ned as p̂ = −iℏ∇ in three dimensions, or p̂x = −iℏ ∂

∂x in one dimension. Thus, the left-hand
side of the equation is the total energy in the system, or its Hamiltonian. In three dimensions the
Hamiltonian operator is therefore

Ĥ = − ℏ2

2m
∇2 + V̂ (r) (68)

Being a linear equation, Eq. 67 can be cast as an eigenvalue problem, where the Hamiltonian Ĥ
is the energy operator acting on the state�an eigenstate�whose eigenvalue solution is the (real)
energy level E of the state, or

ĤΨ = EΨ (69)

More generally, the solution to the Schrödinger equation is a superposition of eigenstates, each of
which corresponds to a di�erent eigenvalue67

ĤΨn = EnΨn (70)

When the potential energy is time-independent V̂ = V̂ (r), the energy is conserved and Eq. 67 may
be solved using separation of variables, which results in solutions of the form

Ψn(r, t) = ψn(r)e
−iEnt/ℏ (71)

The general solution is a linear combination of states of the form of Eq. 71,

Ψ(r, t) =
∑
n

cnψn(r)e
−iEnt/ℏ (72)

65Numerous texts provide rigorous introductions to the theory of non-relativistic quantum mechanics. The present account is
primarily based on Gri�ths and Schroeter (2018) and Cohen-Tannoudji et al. (2020).

66Physically, this is the necessary condition that ensures that the observable that is represented by the operator produces a real
expectation value (i.e., an average value of an observable of a particular state). Algebraically, a Hermitian operator Â is a linear
transformation on a complex vector space, for which the inner product of vectors v and u is independent of the order of operation
⟨u|Âv⟩ = ⟨Âu|v⟩.

67For simplicity, we only present the case in which the eigenvalues are unique (non-degenerate). The case with non-unique
(degenerate) eigenvalues can have some di�erences. Also, for convenience we refer here only to discrete solutions, which are

determined by potential problems with �nite boundaries. Some systems such as a free particle (i.e., when V̂ = 0) result in
continuous solutions for which the resultant mathematics is somewhat di�erent. However, the conceptual points in the discussion
hold in all cases.



Weisser: Frequency as an extra dimension of Reality 63

where cn are coe�cients that are determined by the speci�c potential energy of the system. It is
evident that the Schrödinger equation itself describes the time evolution of the quantum system. For
the time-independent energy-conserving Hamiltonian�by far the most useful case in the theory�the
time evolution operator Û(t) is de�ned through its action on the state Ψ(r, t)

Û(t)Ψ(r, t) = e−itĤ/ℏΨ(r, 0) (73)

which relates any moment t ̸= 0 in the state's past or future to the state Ψ(r, 0) at t = 0.
The unusual aspect of these quantum states is that while they mathematically seem like standard

3D waves, they do not correspond to a physical wave, but to a probability amplitude at a particular
time, which �lives� in an abstract Hilbert space68. In an orthonormal basis, which is always available
for the solutions, this entails the normalization condition∑

n

|cn|2 = 1 (74)

The condition is unchanged over time through a property of the time evolution operator called
unitarity. Each amplitude in the superposition state corresponds to one stationary eigenstate (with
a particular n) of the form of Eq. 71 that appears, through measurement, with probability |cn|2.
This is referred to as the Born rule (Born, 1926). Thus, the measurement can produce only one
eigenvalue at a time in a probabilistic manner, corresponding to a particular eigenstate. This is
a separate e�ect that is not captured by the time evolution of Eq. 73. However, given that the
eigenvalue can only be determined by a measurement, whereas the superposition quantum state
itself is not directly measurable, there is some ambiguity regarding what the mathematical state
corresponds to (see �7.6). The measurement process itself depends on an unspeci�ed measurement
device, which is brie�y coupled to (i.e., entangled with; Busch, 2009; see � 8.2.1) the quantum
system at the instant of measurement, whereupon it produces a value that exists in the macroscopic
(classical) domain and can be registered by an observer.

The moment when the two rules switch and a single eigenstate appears instead of the superpo-
sition state has been called the collapse of the wave function or the reduction of the wave packet.
The Born rule cannot be obtained from Schrödinger equation itself and is conventionally taken as
one of the postulates of quantum mechanics, proven only by experiment. Over many measurements,
the eigenvalues of the ensemble of particles measured will be distributed according to their relative
amplitudes (Eq. 74) that together constitute a mixed state. The wave function collapse is also as-
sociated with the apparent transition to classical physics with observations that remain unvarying,
which take over from the quantum probabilistic domain.

Many proposals on how to solve the seeming paradox of the measurement problem have been
attempted, either in the form of various interpretations to quantum mechanics as a whole (e.g.,
Jammer, 1974; Bub, 1999; Genovese, 2010; Tammaro, 2014; Drummond, 2019), or as more concen-
trated e�orts to derive the Born rule from other postulates (e.g., Vaidman, 2020). The measurement
problem is inherent to the standard interpretation that has been taught and practiced for over a
century�the Copenhagen interpretation�which was primarily advocated by Bohr and Heisenberg
(Stapp, 1972; Howard, 2004). Other interpretations have variably attempted to explain away the
apparent dichotomy between the deterministic and statistical descriptions, and to account for the
wave function collapse. In some cases, an additional goal of the interpretation has been to demystify
or eliminate the role of the observer that may seem necessary in initiating the measurement in some
versions of the standard Copenhagen interpretations (see �7.6).

It is not the intention here to review the measurement problem or its interpretations in any depth
that will do justice to the decades-long work that has been put into it (Genovese, 2010). Rather, we
would like to argue that the very existence of this problem is a corollary of Theorem 1 and as such
it is inherent to quantum mechanics and is inevitable in its standard formulation that makes use of
time and frequency. The same basic conclusion was arrived at by Bassi and Ghirardi (2000), who
proved that the measurement problem inevitably arises for quantum systems that linearly evolve
according to Schrödinger equation, and which are measured by a macroscopic apparatus with almost
orthogonal states that correspond to its quantum state reading. While the present proof approaches
the problem from an entirely di�erent angle, it shares some things in common with Bassi and Ghirardi
(2000): the pre-measurement state relies on the Schrödinger equation, and the post-measurement
state alludes to the deterministic reading of the apparatus.

68Hilbert space is de�ned as a complete inner-product space, which in the quantum mechanical context refers more narrowly to
the set of square-integrable functions in L2 (see Footnote 19).
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In order to prove these ideas, we will demonstrate how quantum theory of the pre-measurement
state is formulated in P1, whereas the measurement output is produced in P2. Then we will invoke
Theorem 1 to argue that the two cannot be simultaneous. We will conclude by brie�y mentioning
how some of the interpretations attacked the problem from di�erent angles that pertain to di�erent
aspects covered by the theorem (�7.6).

7.2 The pre-measurement state

The approach followed in this subsection and the next is to �nd out how the pre-measurement and
post-measurement states are mapped to the di�erent modes of Theorem 1. A parallel argumentation
may be based on the idea that the quantum state is isolated pre-measurement and it opens up to
the environment post-measurement. As it is di�cult to make statements about quantum theory
that are not controversial whatsoever, some of the subsequent arguments may be inadvertently
taken as belonging to a novel interpretation in its own right. Inasmuch as it may appear so, this
argumentation adheres to the standard Copenhagen interpretation.

Time In the Schrödinger equation, where the energy is conserved (i.e., when the potential is
time-independent), time is parametric69. Its wave-function solutions (and their superposition) are
all stationary, so their time dependence is non-dimensional by de�nition (�3.5.3 and �3.5.5). The
parametric nature of time in quantum mechanics is a corollary of Pauli's �theorem�, which goes back
to a footnote that stated that there is no time operator in quantum mechanics, where time is only
a number�or, as has been later elucidated, at least not a universal time operator that can be used
in arbitrary time-measurement contexts70 (Muga et al., 2002; Pauli, 1958 / 1980, p. 63). In more
general presentations, it has been speci�cally emphasized that time is not a dynamic variable (Peres,
2002). In the framework of the present paper, this means that time appears in the pre-measurement
equations in a parametric way that cycles the dynamical system states by virtue of the time evolution
operation (Eq. 73), but it does not function as a dimension71.

Frequency As for frequency, it always appears as a parameter in quantum mechanics and never
as a variable, as long as the potential is time independent. There has been some outspoken dis-
comfort with respect to the notion of quantum jumps between energy levels in discrete quantum
systems (Born, 1926; Schrödinger, 1952a,b; Bell, 1987), which appear instantaneous�unlike any
other physical systems that must take �nite time to move between levels. These jumps correspond
to a single-frequency photon emitted or absorbed in as a result. In contrast, a non-instantaneous
jump could imply a continuous time-dependent function of frequency (or momentum). A recent
measurement showed that the trajectories in Hilbert space of the quantum jumps are in fact not
instantaneous if measured with very �ne time resolution, although no time�frequency measurements
accompanied these data to ascertain whether the frequency is indeed constant (Minev et al., 2019).
See �A.2 for an in-depth discussion about this point.

Indeterminism Finally, there is the issue of indeterminism, which hovers over all of quantum the-
ory and must be introduced into its formalism at some stage. Indeterminism at the pre-measurement
stage can be argued for in di�erent ways, but because of the deterministic time-evolution law, one
way or the other our conclusion may be more controversial. While the Schrödinger equation itself
(and speci�cally the time-evolution operator that is derived from it) is deterministic, its solution�
the wave function itself�generally applies to ensembles of particles and was given the canonical
interpretation of a probability wave by Born (1926). Perhaps no-one better than Born himself was
to phrase the confusing nature of Schrödinger equation that is mathematically deterministic, and
yet relates to an indeterministic measurement: �One can perhaps summarize this, somewhat para-
doxically, as: The motion of the particle follows the laws of probability, but the probability itself
propagates in accord with causal laws.� Therefore, observables, calculated as expectation values (see
Footnote 66), relate to ensembles of particles, whereas the validity of the state for single particles

69It is an autonomous equation; see Footnote 11.
70This is the so-called time problem of quantum mechanics. For speci�c challenges to Pauli's theorem, see Galapon (2002) and

Maccone and Sacha (2020).
71A similar assertion about the nondimensionality of time during the pre-measurement state was gathered by its �timelessness��

a property which is hallmarked by the reversible nature of the state that is compartmentalized between the state preparation and
the collapse of the wave function (Thomsen, 2021). That analysis suggests that time exists outside of the pre-measurement state,
as is also suggested below.
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(their existence in their wave form) is questionable (e.g., Gri�ths and Schroeter, 2018, p. 16; how-
ever, di�erent interpretations disagree here; see �7.5 and �7.6). Thus, despite the deterministic law
of the ensemble probability, the pre-measured state is indeterministic�we can obtain no certain
information in practice about the pre-measurement particle position and momentum�only about
ensembles in superposition.

These pre-measurement state characteristics cover the bulk of standard quantum physics, which
maps it clearly to P1. In fact, P1 is overdetermined here, because according to Theorem 1, it is
su�cient to know that time is parametric, or that frequency is parametric and that the system is
indeterministic, or that its indeterminism is of the probabilistic kind (known horizon, but unknown
vicinity). Either one of these indicates that the pre-measurement state must be at P1.

7.3 The post-measurement state

In contrast to the pre-measurement state, in the post-measurement state the system is moved to
the (macroscopic) classical domain, where the other systems lie: the detector, observer, and farther
environment. The logic below runs parallel to that in the P2 part of the theorem proof in �5.

Time The moment in which the measurement is carried out is distinguished: it is unlike any other
point in time and has an absolute status, which means that, at this moment, time has become di-
mensional: the closed-quantum-system stationarity has been disrupted and it now becomes causally
attached to the measurement system and environment. Thus, post-measurement time is necessarily
dimensional.

Frequency The observed values of the frequency or spectrum (to the extent that they are ob-
served) are parametric, as before, as they are �xed and not variable at the moment of measurement.
They correspond to the particular (mixed) quantum state energy levels that made it to the classical
domain through the measurement, after the superposition wave-function collapse.

Determinism The measurement result (after the collapse of the wave function) is de�nitive and
stable�its value is no longer indeterministic, but has been deterministically measured with prob-
ability p = 1, to within a certain error margin de�ned by the �delity of the measurement setup,
experimental method, noise level in the experiment, etc.

These considerations clearly set the measurement reading�really the post-measurement state�
within P2. Once again, though, the identi�cation of P2 is overdetermined since according to Theorem
1, it is su�cient to know that the post-measurement state is deterministic, or that it is characterized
by dimensional time and parametric frequency.

7.4 The instant of measurement and Theorem 1

According to Theorem 1, P1 and P2 are logically incompatible and cannot be simultaneously applied
to Reality. This is true even if we consider the instant of measurement in which the quantum system
and measurement apparatus have to be coupled�an entangled state that we will later consider to
belong to P3 (see �8 and speci�cally �8.3.3)�which involves additional discontinuity between modes.
Therefore, when switching between the two modes, as is the case between pre- and post-measurement
quantum states, we can expect a discontinuity of an unspeci�ed physical nature. Hence, insofar as
the quantum states correspond to P1 and P2, the measurement problem appears to be inherent to
quantum theory. This suggests that it may not have a solution, as long as time, frequency, and
determinism are all used to formulate this physics, whether explicitly or implicitly. A solution to the
problem, should one exist, may require a more fundamental change in the basic concepts as appear
in the theorem and are carried over to quantum theory.

7.5 Quali�cations

At least two of the assumptions made in the pre-measurement mapping may be challenged. First,
the Schrödinger equation need not have a time-independent potential energy. A time-dependent
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potential energy can signi�cantly complicate the solution, as it may render the equation dynamically
non-autonomous and non-conservative, and the time dimensional, which generally leads to solutions
that are nonstationary. Relatively simple potentials that include small-amplitude periodic (AM) or
random (broadband) terms in the external potential are reviewed, for example, in Cohen-Tannoudji
et al. (2020, pp. 1303�1355). In the AM case, the transition probability itself (say, between the
initial and �nal states of a system with non-degenerate and discrete spectrum) depends on the
external modulation frequency, whereas in the broadband case there may be additional energy level
shifts in the di�erent states due to �uctuating potential (e.g., as caused by bandlimited external
electromagnetic �elds). In any case, these problems are still solved using parametric time and
frequency (now playing a more dynamic role)�but within the context of a probabilistic system�
and are thus still generally mapped to P1 (see also comment on p. 7 of Thomsen, 2021). However,
with some potentials, given that spectral considerations now play a key role in the analysis, it may
appear to be more appropriate to map the pre-measurement states to P3 instead. One such implicit
example may be hinted in Cohen-Tannoudji et al. (2020, p. 1329�1330), where the system described
exhibits only � little memory� of its proximate time window dynamics, but not necessarily to more
remote states in the past or future72. See also �8.

A second assumption we made above is that the Schrödinger equation always relates to en-
sembles of particles, where the statistical interpretation of a probabilistic pre-measurement state
is warranted. However, quantum theory has been put to a test also on a single-particle scale, in
which case Born's probability-wave notion becomes suspect, while the wave function description
tends to apply, albeit counterintuitively, without resorting to the entire ensemble of particles and
measurements to obtain correspondence with the wave function (e.g., Ringbauer et al., 2015). Most
relevantly here, several studies speci�cally probed the pre-measurement state using single-particle
measurements, by employing methods that do not lead to wave-function collapse (at least not im-
mediately). Measurements were reported, for example, of single-particle superposition of eigenstates
(Piacentini et al., 2017), simultaneous detection of a particle in two places at once (Zhou et al.,
2017), �strange� (weak) eigenvalues that are not permitted post-measurement (Goggin et al., 2011),
and complex-valued states (Lundeen et al., 2011).

These single-particle results beg the question of whether the single-particle pre-measurement state
is indeed probabilistic as the results from Goggin et al. (2011) suggest, or it is in fact deterministic,
as the (deterministic) Schrödinger equation prescribes and predicts and is suggested from Piacentini
et al. (2017) and Zhou et al. (2017). If a deterministic pre-measurement state is indeed accessible,
it may appear to be in violation of Theorem 1 and in contradiction of our falsi�cation of P7 (�5),
which states that Reality cannot have parametric time and frequency and also be deterministic.
However, a close inspection of the abovementioned studies reveals that it is not at all clear that
any of the stages of the measurement maps to P7 (see also argument for the impossibility of P7 in
�A.2). First, a weak-measurement is still a measurement and entails a degree of coupling, however
small, to the measurement apparatus, which results in a correspondingly weak perturbation of the
pre-measurement state (Hance et al., 2023). Furthermore, in all cases mentioned above, the method
involves a post-selection stage, which partially de-randomizes the otherwise probabilistic identity of
the post-measurement state and thereby enables inference about its pre-measurement state, given
su�cient averaging that reduces the statistical uncertainty (Aharonov et al., 1988). Therefore,
while the system response is made to appear deterministic, its output is nevertheless drawn from a
probability distribution, and as such it requires an ensemble of similarly post-selected single particles,
with corresponding averaging. A deterministic interpretation of the post-weak-measurement, on the
other hand, would have each individual measurement distinguished in time, but mired in noise,
which requires su�cient averaging to obtain a clear signal about the underlying value of the pre-
measurement state�still P2.

The aforementioned single-particle experiments provide some insight on the pre-measurement
physics and the validity of quantum theory, but due to the complex combination of methods and
underlying analytical assumptions, they are not amenable to a straightforward interpretation (e.g.,
Vaidman, 2017; Hance et al., 2023), including the classi�cation according to the framework set in this

72More complex time-dependent potentials have also been explored in the nonlinear dynamical and mathematical physics liter-
ature and are beyond the scope of this discussion. However, we can only note that similar to the complex nonstationary examples
referenced in �6.3, it is not always trivial to place the analysis within a single mode, because di�erent mathematical methods may
be used in succession to reach a solution. This means that in some cases it may appear that a deterministic approach of P2 is used
to solve an essentially indeterministic equation, in which case care must be taken to elucidate the exact status of both time and
frequency as parameters or dimensions. Also, assumptions regarding complete knowledge of the future or past potential, as well as
neglecting of various transient states, must be considered.
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work. It is not impossible that future methods for single-particle measurements will be simpler to
interpret in a way that could challenge the above interpretation and be more at odds with Theorem
1. At present, however, the validity of the theorem seems to hold.

7.6 Alternative interpretations

Di�erent interpretations of quantum mechanics have aimed to address the seeming paradoxes and
inconsistencies in the orthodox Copenhagen interpretation, key to which is the measurement prob-
lem. They tend to rely on the existent formalism of quantum theory and do not necessarily add any
new elements to the theory, but rather o�er a fresh perspective that, at its �nest, may enable the
circumvention or dissolution of the measurement problem. As of the time of writing, no interpre-
tation is universally accepted by the physics community (Schlosshauer et al., 2013; Sivasundaram
and Nielsen, 2016). Furthermore, all major interpretations appear to substitute some issues with
other issues, which only makes them di�erently de�cient than the standard interpretation (Tam-
maro, 2014). For some, this very limited success should amount to an altogether abandonment of
the notion of (re-)interpretation of the theory, especially given its undeniable success in its standard
form, despite these outstanding issues (Fuchs and Peres, 2000). For others, the current impossibil-
ity to reject incorrect interpretations in experiment is both unreasonable and frustrating (Cabello,
2017). As this work's main focus is not quantum theory, the various interpretations are mentioned
here without review and with minimal commentary. Moreover, they mostly appear with reference
to their original versions and not to subsequent iterations. Rather, a brief overview is provided of
how a subset of the major interpretations can be understood through the lens of Theorem 1.

Several models tackled speci�cally the instant of measurement that can provide an account of
the discontinuity. What may be one of the most controversial interpretations is that the wave
function collapse is caused by a conscious agent that performs the measurement. The idea was
implied by von Neumann (1932 / 2018) in his seminal analysis of the measurement process, alluded
to by London and Bauer (1939 / 1983), and was �nally made explicit by Wigner (1961 / 1983).
This interpretation conforms to the standard Copenhagen interpretation, with the uncomfortable
addition of the nonphysical, conscious observer that is responsible for the switch between the pre-
and post-measurement states (P1 to P2).

Other interpreters reacted by explicitly trying to eliminate the role of the observer. The objective-
collapse model or GRW model, named after the original authors (Ghirardi, Rimini, and Weber, 1986),
posits that particles spontaneously collapse according to a hypothetical random process, at an in-
�nitesimally slow rate that is suggested to be a constant of nature. This would statistically render
isolated quantum systems e�ectively immune to collapse. However, once they get entangled with the
measurement apparatus, the large number of particles that make the combined macroscopic system
results in a propagated collapse, because the rate is now scaled by the number of particles. This
theory stitches the pre- and post-measurement processes, by deferring the primary indeterministic
component to the spontaneous collapse itself. This would make it a P1 to another P1 to P2 model.
While the role of the observer is eliminated, the discontinuity is not. In the transactional interpre-
tation, the measurement is decomposed into retarded and advanced waves in time that are passed
between an emitter and an absorber (for example, where one can assume the measured particle and
the other is the apparatus) (Cramer, 1986). The emitter and absorber perform an instantaneous
�handshake�-like sequence of wave exchanges that analytically lead to the Born rule. Despite its
unintuitive mechanism the process is causal and may be framed as a nonstationary P3 process. In
any case, the e�ect of the (unmeasurable) intermediate handshake process reproduces the P1 to P2
pre- to post-measurement states.

Some interpreters focused on making the theory fully deterministic, thereby eliminating all the
otherwise inexplicable randomness. Bohmian mechanics or pilot wave theory (Bohm, 1952a,b; an-
ticipated by de Broglie, 1930 and Rosen, 1945) exploits a decomposition of the wave function into
two parts (amplitude and phase), which can be roughly associated with a deterministic particle and
a probabilistic �eld. While we do not have the initial conditions for the particle (considered its
�hidden variables�), having them would result in a fully deterministic (classical-like) solution pre-
and post-measurement, that is only brie�y perturbed during the measurement, which is nonstation-
ary in nature. Given the hypothetical access to the time-distinguished initial conditions, this model
can be classi�ed as a P2 to P2 process, perhaps going through P3 due to the perturbation, but
which can otherwise remain continuous. Hence, the measurement problem may be eliminated here,
at the initial cost of having to deal with unmeasurable hidden variables. A completely di�erent
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interpretation that is geared to achieve the same continuity is the many-world interpretation (Ev-
erett III, 1957). Here, instead of collapsing, the wave function branches to multiple �worlds� upon
every measurement�each world corresponding to one eigenstate contained in the superposition pre-
measurement state�although we (somehow) experience only a single branch of all the branches that
continue to exist post-measurement. The branches depend on an unspeci�ed memory that has some
bearing to past states. Considering this solution from time zero before any state began branching,
this interpretation achieves full determinism, in line with P2, at the cost of a signi�cant loss of ap-
parent realism. The related many-minds interpretation by Zeh (1970) is perhaps an amalgamation
of the consciousness-collapse and the many-worlds interpretation, assigning the conscious observer
with the task of isolating or selecting a single state out of the superposition of states that arrive at
the measurement apparatus after measurement.

Other interpretations embraced the indeterministic element in quantum theory. Ballentine (1970)
proposed the ensemble interpretation, according to which the quantum state is nothing but a de-
scription of statistical ensembles of many particles and, as such, it is subjected to statistical rules,
both pre- and post-measurement73. The collapse is only apparent and the Born rule (as well as
a host of other statistical properties) is a re�ection of the probabilistic nature of the state. In all
cases, time is a parameter of the ensembles. Thus, this interpretation remains in P1 pre- and post-
measurement, and the measurement problem is avoided. According to the QBism interpretation,
indeterminism is interpreted using the de�nition of Bayesian probability, which assigns values of be-
lief to di�erent possibilities of the system and are therefore particular to the observer (Fuchs, 2010;
Fuchs et al., 2014). The Born rule is therefore a direct application of this logic, as each outcome
occurs at a di�erent likelihood. However, once the observer obtains the result, it essentially becomes
deterministic for them and can be incorporated into their experience. Therefore, QBism still retains
a P1 to P2 transition and while the discontinuity is justi�ed, it persists. A di�erent probabilistic
take on the measurement process is the consistent histories interpretation, which models the proba-
bility associated with di�erent sequences of events (time-speci�c states) that may take place in the
experiment through to the pre- and post-measurement moments (Gri�ths, 1984). Each history to
its own may be perhaps taken to be deterministic, while the totality of all of them produces a P1
Reality both pre- and post-measurement, and is therefore indeterministic. However, the measure-
ment is a conditional event within the particular history and no collapse takes place. Finally, in the
relational interpretation, the relative information available to the system and the observer is used as
the guiding principle (Rovelli, 1996). Here, the measurement is a querying action by the observer,
which is any system whatsoever de�ned by its relative boundaries to the observed system. The
interpretation is fully within P1, given that everything (including the states themselves) is relative,
although the measurement constitutes a disruption that may be taken to be P3, as in some of the
above interpretations.

Finally, we should also mention decoherence, which is the logical continuation of the measurement
instant that appears as an instantaneous collapse of the wave function, as the system and apparatus
couple with the whole environment in which the measurement takes place (Zurek, 2002). Decoherence
describes the di�usion of the superposition state reduction and e�ective appearance of a mixed state
over a very brief, albeit �nite, time course. Because it is essentially a continuous process, it is
possible to add decoherence to di�erent interpretations in their own modes. So it o�ers a path of
interpolation the P1 to P2 transition in the standard interpretation, while remaining in P2 in the
case of the many-worlds interpretation.

In conclusion, most interpretations above recognize the shift between a closed pre-measurement
system that opens up and gets entangled with the apparatus post-measurement, whereupon it be-
comes merged with the observer, the environment, or even with the whole universe. In general,
this shift in boundaries is neither well-motivated nor well-understood. Ideally, it is explained as
something that �just happens� by virtue of coupling between the closed microscopic and larger
macroscopic systems that somehow results in the selection of one particular state outcome. Less
ideally, it requires the involvement of an unquanti�able, nonphysical element of consciousness. The
indeterminism may be a necessary evil, a re�ection of the observer's ignorance or, perhaps, the insuf-
�cient reach of the theoretician. Short of being inherent to the physics, some believe that apparent
indeterminism should be replaceable with a fully deterministic account, à la Laplace (see �A.1),
which begs the question�what amount of realism is a plausible tradeo� in exchange for banishing
indeterminism74? Interpretations that might seem to be doing away with the measurement problem

73Ballentine (1972) argued that this interpretation corresponds also with Einstein's view of quantum mechanics.
74Granted, some may argue that realism is already a rare commodity in the quantum domain.
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are those that manage to retain the system within either P1 (indeterminism) or P2 (determinism)
over the pre- and post-measurement system75. At any rate, none of the interpretations reviewed
seems to violate Theorem 1, as the discontinuity between P1 and P2 may be either accounted for
or eliminated by maintaining a continuous P1�P1 or P2�P2 mode. Note that none of the men-
tioned interpretations has directly appealed to considerations of time or frequency as parameters or
dimensions.

8 Example VI: Nonlocality

8.1 Introduction

Up until now, all the examples discussed could be considered to be of strictly epistemic nature,
which represents either a mathematical convenience in analysis and method, or some inherent def-
initional oddities related to the interrelationship between frequency, time, and determinism. Even
in the motivating case of perception, where the role of frequency is demonstrably key (�2.1), the
lack of uniformity between the qualia associated with the di�erent senses and their respective fre-
quency ranges may be thought of as a representational tool of reality for or by consciousness, rather
than corresponding to an objective dimension of Reality. Hypothetically, inconsistencies that arise
in invoking these concepts may be accounted for by using more adequate de�nitions than are cur-
rently available, as well as demanding more careful di�erentiation between the physical Reality and
perceptual reality�something which this work has been partial about from the get go (�1).

The idea presented in this section goes further than the previous examples by serving as a
gateway for the possibility of an ontic frequency dimension�a dimension that is an actual part of
physical Reality, and yet it exists outside of space and time. This ontological view can nonetheless
coincide with the concepts that are encapsulated within Theorem 1. While undoubtedly deemed as
both speculative and unrealistic (or even downright non-physical), given the already well-established
science of quantum nonlocality, such an ontological reach of the theory may not be all that far-fetched.

The distinction between local and nonlocal e�ects in physics has acquired prominence of late, for a
large part due to the inherent nature of quantum mechanics. Locality entails that an e�ect measured
on a system must be caused by events or forces (perhaps represented by a �eld) in the immediate
vicinity of the system itself, in its own position and time coordinates. In contrast, nonlocality has an
e�ect depending on something that takes place elsewhere�at a region of space or at a moment in
time di�erent and disconnected with where the e�ect action itself is located. Another requirement
for locality is obtained by imposing special relativistic constraints, which limit the velocity of any
communication to the speed of light (according to the special theory of relativity). This leads to a
stringent notion of causality: nothing can cause itself�no action can travel faster than the speed of
light so to change its own past (i.e., retrocausality is prohibited). Hence, in applying causality as a
constraint, anything that appears to violate it may be suspect as nonlocal.

Nonlocality in quantum mechanics has been primarily associated with quantum entanglement and
the Einstein�Podolsky�Rosen (EPR) paradox (Einstein et al., 1935) and with its subsequent bench-
mark in the form of Bell theorem and Bell tests (Bell, 1964; see Fig. 20). Although the existence of
nonlocal e�ects through entanglement has been repeatedly demonstrated in experiments since Bell,
a consensus interpretation of these measurements�much like regarding other aspects of quantum
theory�does not exist as of yet. Whenever loopholes had been discovered in the experimental pro-
tocols of particular Bell tests or their associated theory, the local-variable explanation is generally
preferred and may be conjectured to override any nonlocal account. However, Bell theorem ruled
out any local hidden variable explanation in the observed case of violation of the Bell's inequality,
which has left room only for a nonlocal hidden variable theory (Bell, 1975). Still, it is not at all
clear that even that may be within reach (Leggett, 2003; Ringbauer et al., 2016; Dalton, 2024).

The objective in this section is to brie�y review the main nonlocal e�ects in quantum mechanics�
entanglement in Bell tests being the primary one�alongside mentions of the Aharonov�Bohm e�ect
and the two-slit experiment as additional examples. Then we explore whether the nonlocality in-
herent in the frequency dimension and in quantum mechanics may be amalgamated by applying
Theorem 1 to the problem. Answering in the a�rmative, we shall further inquire whether the fre-
quency dimension could provide a full solution to the nonlocality problem. It is therefore suggested

75While this can be seen as an obvious advantage of some interpretations (e.g., Bell praised Bohm's theory because it eliminated
�...any need for a vague division of the world into `system' on the one hand, and `apparatus' or `observer' on the other ;� Bell,
1984, p. 1), others consider it a failure to reproduce the measurement problem or the measurement outcome (Tammaro, 2014).
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Figure 20: Three theoretical realizations of the quantum nonlocality paradox. Top: The original
Einstein�Podolsky�Rosen (EPR) thought experiment looked at a generic system that is composed of
two subsystems, which interact for a short duration, before they are separated (Einstein et al., 1935).
When they are su�ciently distant, their interaction is null and a quantity that is tied to a noncommuting
operator (i.e., momentum) is measured on one particle. According to quantum mechanics, this would also
determine the same quantity in the other particle, appearing as a nonlocal action at a distance. Middle:
Bell (1964) extended a thought experiment by Bohm and Aharonov (1957), in which two entangled spin-
half particles (e.g., an electron and a positron after a decay of a neutral pion particle) are measured using
two Stern�Gerlach apparatuses to determine their spin value (either up or down). Bell showed how if the

two apparatuses are set to di�erent arbitrary orientations (a⃗, b⃗, and c⃗), the three possible correlations

between the measurements in the di�erent orientations (designated with P (a⃗, b⃗), P (⃗b, c⃗), and P (c⃗, a⃗)) can
reveal whether the results are in fact determined by a hidden parameter, or whether the predictions of
quantum theory are correct. Bottom: The Clauser�Holt�Shimony�Horne (CHSH ) practical variation
of the Bell test (Clauser, Horne, Shimony, and Holt, 1969) was the �rst to be realized and to conclusively
violate Bell (CHSH) inequality in an experiment by Aspect, Grangier, and Roger (1982). CHSH replaced
the spin-half pair with an entangled photon pair with orthogonal polarizations, as a result of an atomic
cascade transition. Each photon goes through a polarizer �lter (square with diagonal in the �gures)
that is set up at some angle, whose two orthogonal outputs (marked with ⊥ and ||) are detected and
correlated with the outputs from the other polarizer, which is set to another angle. Using combinations
of four di�erent angles (two on each side), it is possible to benchmark a model that contains a hidden
parameter, or obtain a di�erent prediction that is in line with quantum theory and is nonlocal.

that both quantum mechanics and an ontic frequency dimension are nonlocal. We shall explore
below whether the two nonlocalities coincide. While this discussion runs the risk of embracing the
nonlocality notion a bit too enthusiastically for some critics, we can respond using an inversion of
the beaten aphorism: extraordinary evidence requires extraordinary claims.

8.2 Hallmark quantum nonlocal phenomena

Quantum nonlocality has been brought to attention primarily through the EPR paradox and the
subsequent work of Bell. However, its shadow has been persistently present at the very heart of
quantum mechanics, beginning from the quantum measurement and wave function collapse, as was
already implied indirectly by Born (1926): �...one must show whether the interference of damped
`probability waves' su�ces to explain the phenomena that apparently point to a coupling that does
not relate to spacetime.76�

76The original German text is: �...hier muÿ sich zeigen, ob die Interferenz gedämpfter, `Wahrscheinlichkeitswellen' hinreicht,
diejenigen Erscheinungen zu erklären, die anscheinend auf eine raumzeitlose Kopplung hindeuten.� More nuanced references to
nonlocality may be traced in earlier writings of Einstein (Doyle, 2015).
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Nonlocality also features in a host of other more or less obscure quantum e�ects, which are typi-
cally distinguished from Bell's nonlocality, sometimes by di�erentiating between kinematic (related
to the quantum mechanical Hilbert-space structure) and dynamic (related to the quantum equations
of motion) types of nonlocality. As is brie�y reviewed below, there is no consensus that nonlocality
is the most appropriate explanation for some of these otherwise unintuitive results, as it has struck
many, beginning from Einstein himself, as fundamentally unrealistic77.

8.2.1 Entanglement and Bell nonlocality

When two or more quantum systems interact, they become correlated. If the correlation is such
that the individual systems cannot be treated as independent, they are considered entangled. More
technically, entanglement entails the non-separability of the component quantum states within the
state of the combined system. The entangled state is distinguished from a product state, in which
the component systems (the subsystems) retain their identity when the combined state function is
separable, that can be factored as a product of the subsystem states. Speci�cally, in two-particle
entangled systems, determination of the state of one of the particles (through measurement) predicts
the state of the other particle. For example, the state of a system composed of two spin-1/2 particles
(a singlet state), which has a total spin of zero, can be entangled using the spin as the degree of
freedom (Bohm, 1951)�represented symbolically using the bra�ket notation, where |A⟩ represents
the state A. In spin entanglement, the state is

|Ψ⟩ = 1√
2
(|↑⟩1 |↓⟩2 − |↓⟩1 |↑⟩2) (75)

where the index following each state represents the particle number 1 or 2 and the ↑ and ↓ represent
its particular spin state, which can be either spin up or down. A measurement of one of the particles
would result in a state of either spin up or spin down with probability 1/2 (according to the Born
rule), in which case the other particle would necessarily result in spin down or spin up, respectively.

The remarkable thing about such entangled systems is that their correlation can hold remotely,
even if the particles are separated in space over arbitrarily large distances. However, the �nal
state of the particles is unde�ned (random) until the instant of measurement, which means that
the particles have to somehow communicate the measurement between one another, what appears
as instantaneous and perfect correlation between the particles. Such communication, however, if
carried out through space, would be superluminal (faster than the speed of light), in violation of the
special theory of relativity (Sommerfeld, 1914; Brillouin, 1914; Ghirardi et al., 1980, 1988). As there
is no known �eld to constitute the correlational link in spacetime between the entangled subsystems,
this property is nonlocal.

Despite the repeated demonstration of nonlocal correlation at ever-improving-controlled (� loophole-
free�) experiments, current theory does not provide an explanation for what it is in the physical
Reality that is captured by the quantum state, which ends up resulting in nonlocality, aside from a
few conjectures about the geometry of spacetime (see �8.2.4). Rather, the standard theory simply
brings out the physical outcomes that are encapsulated in the intricate mathematical formalism
underlying the quantum state.

Empirical tests of the nonlocality of entangled states were operationalized by Bell through his test
and associated theorem (inequality) (Bell, 1964) and their subsequent variations (notably, Clauser,
Horne, Shimony, and Holt, 1969; see Fig. 20). The original EPR argument was that quantum theory
cannot be considered realistic, because it gives rise to �spooky action at a distance,� as Einstein wrote
to Born later (Born et al., 1971, p. 158)�despite the prediction made by quantum theory (Einstein
et al., 1935). However, according to EPR, if such a correlation is measured between remote particles,
then there must be a hidden variable that accounts for the correlation, which means that quantum
theory itself is incomplete. The alternative proposed by EPR is that there is no simultaneous Reality
that applies to any two noncommuting quantities (such as position and momentum), where Reality
was de�ned, for the narrow scope of the EPR paper, by �If, without in any way disturbing a system,
we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity,
then there exists an element of physical reality corresponding to this physical quantity.� Bell (1964)
rei�ed this logic by producing two predictions of the results of a gedankenexperiment proposed by
Bohm and Aharonov (1957). One prediction allowed for a �hidden variable� to account for the

77The roots of the discontents regarding action at a distance go back to Newton with respect to gravity. See Jansson (2024) for
discussion and references.
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hypothetical nonlocal correlation and was expressed as an inequality, whereas the other prediction
was obtained using standard quantum theory that contains no hidden variables (i.e., implying that
quantum theory is indeed complete). If the latter prediction is correct, then it violates the inequality
of the former�something that could be (eventually) tested experimentally. Hence, experiments that
violate the Bell inequality are considered to follow quantum theory that is complete, where no local
hidden variables play a role. The theorem, though, left room for nonlocal hidden variables to predict
the results (Bell, 1975).

Despite the consistent, high-quality outcomes of the various Bell tests in supporting quantum
theory (i.e., the existence of nonlocal correlations with no hidden local variables), beginning from
Aspect, Grangier, and Roger (1982) and culminating in Hensen et al. (2015), Giustina et al. (2015)
and Shalm et al. (2015), there remain dissenting interpretations of the experimental results. They
generally argue that the measured correlations are not indicative of nonlocality, but rather of other
causes. The main motivation behind many of the alternative views has been to reinstate a realistic
(i.e., local and causal) physics, alongside the elimination of what may be considered super�uous
metaphysical baggage that tends to mire discussions about nonlocality (e.g., Gri�ths, 2003; Bohm
and Hiley, 1993, pp. 129�130). Roughly speaking, these are the main classes of interpretations of
the Bell test results and apparent associated nonlocality:

1. Nonlocal correlations emerge from outside of spacetime (e.g., Gisin, 2009). These may or
may not be the result of hidden nonlocal variables (Garuccio and Selleri, 1976; Leggett, 2003;
Gröblacher et al., 2007; Dalton, 2024). Various loopholes in early Bell tests may have given the
impression of nonlocality, but the physics could have been local. They are roughly classi�ed into
detection loopholes, which primarily entail low-e�ciency detection and questionable methods
to deal with no-event detections; locality loopholes, when the detectors are not su�ciently well-
separated to preclude light-speed communication, or their randomly-triggered measurements
are not truly independent of each other; and �nite statistics loopholes that make unwarranted
assumptions about the underlying probabilistic distributions of the measurements (Brunner
et al., 2014). These loopholes seem to have been fully redressed over the last two decades, so
unless further loopholes are going to be pointed to (and experimentally tested) the nonlocal
test results are considered valid and nonlocality is real.

2. The nonlocality attributed to the Bell test results is erroneous for di�erent reasons. For exam-
ple, a lack of statistical independence of the two remote measurement setups and the role of the
experimenters therein can render the test local (superdeterminism; Hossenfelder and Palmer,
2020). Another criticism is that the Bell test results must be viewed with appropriate con-
sideration of quantum contextuality78, which when correctly applied invalidates the claims for
nonlocality (Khrennikov, 2019; Kupczynski, 2020). Finally, according to Gri�ths (2020), in-
terpretations that have led to the conclusion that nonlocality exists have been based on several
errors such as misapplication of the wave function collapse concept, misuse of classical hidden
variable models instead of quantum ones, and wrong logical reasoning in operationalizing the
EPR paradox. It was argued that when these are all redressed, a fully local account of the
results of Bell tests follows.

3. Superluminal correlation that does not yield communication may be possible according to
the special theory of relativity, which may be su�cient to produce the correlation between
entangled particles (John Bell, as part of an interview with Davies and Brown, 1986, pp. 45�57).
Several models have examined possibilities for this solution that transforms apparent nonlocality
to locality-of-a-sort (e.g., Eberhard, 1989; Bohm and Hiley, 1993; Scarani and Gisin, 2005).
Experiments that tested these models have so far only resulted in establishing lower bounds for
the superluminal velocity (Cocciaro et al., 2018), so instantaneous nonlocal correlations cannot
be ruled out.

4. Attempts at challenging the notion of causality and its relationship to the special theory of
relativity may open the door for local or nonlocal communication, which is conventionally seen
as noncausal, or retrocausal (Hall and Branciard, 2020; Adlam, 2022).

Respectfully acknowledging the ongoing controversy, we shall strictly focus on the nonlocal inter-
pretation (1), accepting the received version of quantum theory and loophole-free experimental
outcomes.

78Quantum contextuality refers to dependence of the quantum measurement outcome of one observable on the other observables
that are being simultaneously measured in the same experiment (Budroni et al., 2022).
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8.2.2 The Aharonov�Bohm e�ect

In the Aharonov�Bohm e�ect, an electron beam is split into two and each beam is made to pass next
to a solenoid, which is characterized by a magnetic �ux F0 within its volume at r < 0, but produces
no magnetic �eld outside of it at r > 0 (see Fig. 21, right) (Aharonov and Bohm, 1959; the e�ect
was anticipated by Ehrenberg and Siday, 1949). Although there is no magnetic �eld outside of the
solenoid, there is a non-zero magnetic vector potential A there79, which is related to the magnetic
�ux through ∮

A · dx =

∫
B · ds = F0 (76)

with B being the magnetic �eld and s is the surface through which the �ux is calculated. The vector
potential also appears (as an operator) in the Hamiltonian

Ĥ =

(
p̂− q

c Â
)2

2m
(77)

where p̂ is the momentum operator and q is the charge of the particle. After passing the solenoid in
di�erent paths, the electron beams are recombined and made to interfere. The resultant interference
pattern is nevertheless found to be a�ected by the solenoid, as a corresponding phase shift becomes
visible and depends on the vector potential

∆ϕ =
q

c

∮
A · dx =

q

c
F0 (78)

which corresponds to a phase dependence on the magnetic �ux within the solenoid. The di�culty
arises because the vector potential should have no direct physical role according to classical electro-
dynamic theory, which makes any dependence on it puzzling.

An analogous electric e�ect contains a similar setup where the electrons are made to pass through
a time-dependent electric potential region with zero electric �eld (Fig. 21, left).

Both magnetic and electric e�ects are in violation of classical electrodynamics that attributes
no e�ect to a local potential in the absence of a local �eld that is necessary for producing a force
(Footnote 79). In quantum mechanics, a nonlocal interpretation is necessary if the e�ect is strictly
dependent on the remote �eld, because the potential is, by de�nition, not gauge-invariant and cannot
be observed. The alternative is that the potential has a local physical e�ect, which de�es gauge
invariance and contradicts classical electrodynamic theory and is, therefore, a no-less implausible a
solution.

The �rst experiment to test the magnetic Aharonov�Bohm e�ect was presented by Chambers
(1960), but it was not possible to rule out that there was no �eld leaking into the region where the
electron beams traversed�a major challenge in testing this e�ect. To date, the main experimental
evidence for the Aharonov�Bohm e�ect is widely considered to have been obtained by Tonomura
et al. (1986). A con�rmatory test of the electric Aharonov�Bohm e�ect is still pending (Weder,
2011).

Just as with the nonlocality associated with the Bell test results, so is a nonlocality that may
underlie the Aharonov�Bohm e�ect seen by many as an implausible interpretation that has no place
in physics that describes Reality. Therefore, various alternative explanations have been proposed
that associate the Aharonov�Bohm phase shift with a local e�ect, of which only the bulk of the
most recent suggestions are brie�y mentioned. An analysis by Kang (2015) contested the nonlocality
interpretation of the Aharonov�Bohm e�ect, as he was able to �nd a gauge-independent Hamiltonian
to replace the standard one that is gauge dependent (cf. DeWitt, 1962; Aharonov and Bohm, 1962).
In his alternative semi-classical analysis (i.e., combining quantum and classical elements in the
model), he showed how at least in some of the experimental con�gurations, the electromagnetic
�eld is not fully eliminated, rendering the phase shift local. Vaidman (2012, 2015) came up with an
analogous problem statement and used semi-classical methods to obtain a local phase dependence.

79The electromagnetic �eld may be expressed as the derivative of a potential function, as part of its gauge invariance property.
According to classical electrodynamics, there is freedom in selection of the gauge term, which does not impact the physics of the
problem, but only represents a mathematical degree of freedom owing to vector calculus identities and Maxwell equations (e.g.,
Jackson, 1999, pp. 239�240). Thus, the magnetic �eld B satis�es B = ∇×A, with A being the vector potential. The electric �eld
satis�es E = −∇Φ− ∂A

∂t
, where Φ is the scalar potential. These identities result in allowable transformations that do not impact

the �elds�both to the vector potential A → A′ = A+∇Λ and to the scalar potential Φ → Φ′ = Φ+ ∂Λ
∂t

, where Λ is some scalar
function.
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Figure 21: The two Aharonov�Bohm e�ects (Aharonov and Bohm, 1959). In both e�ects an electron
beam is split into two di�erent paths that are later recombined and form an interference pattern. Left:
In the time-dependent e�ect the electrons are made to cross a zone with zero electrical �eld, but with a
time-dependent scalar potential φ that is di�erent between the two paths. Right: In the two electron
paths there is a di�erent time-independent vector potential A⃗ (denoted with A in the text), yet the

electromagnetic �eld B⃗ (in the text, B) is zero there, due to shielding by metal. In both e�ects, the
asymmetrical potentials between the paths create a phase di�erence that is detectable in the interference
pattern of the two beams after being recombined.

Pearle and Rizzi (2017) con�rmed these results by quantizing the models of the electron, solenoid,
and vector potential (as well as pair combinations thereof). Other explanations resorted to quantum
electrodynamic approaches, whereby virtual photons mediate the interaction between the charged
particle and the magnetic �ux, according to the gauge �eld (Santos and Gonzalo, 1999; Li et al., 2018;
Marletto and Vedral, 2020; Saldanha, 2021; Kang, 2022). For example, Kang (2022) obtained the
magnetic Aharonov�Bohm phase using a local model with a general gauge (but not for the electric
Aharonov�Bohm e�ect), where the scalar potential had a physical role and was gauge variant.
Saldanha (2021) too proposed a general gauge-invariant explanation for general geometries using
the concept of virtual photons, generated due to �uctuations in the vacuum electromagnetic �eld,
which depends on the path of the charged particles80. While only a subset of these local models
were addressed (or rebutted) in literature, a well-established alternative local model has not been
obtained yet and the nonlocal interpretation remains dominant at present (Aharonov et al., 2015,
2016).

8.2.3 The double-slit experiment

Perhaps the most iconic of all (gedanken-)experiments of quantum mechanics, the double-slit ex-
periment, is often invoked to demonstrate the wave�particle duality and quantum complementarity
(Bohr, 1970; Scully et al., 1991). The starting point is the classical double-slit experiment with light
that gives rise to an interference pattern on a screen, which is well accounted for using the classical
theory of light waves (Young, 1804). When realized within a quantum setup�for a beam of particles
(photons, electrons, neutrons, atoms)�it is shown that it is impossible to simultaneously determine
in which of the two slits a particle has gone through without destroying the interference pattern.
Hence, the instantaneous measurement can show either a particle-like or a wave-like behavior, but
not both together. This e�ect has been attributed to the entanglement between the measurement
apparatus and the particles (Dürr et al., 1998). It has been noted several times that the double-slit
experiment is nonlocal in nature (Spasski�� and Moskovski��, 1984; Chiao et al., 1995; Popescu, 2010;
Susskind, 2016; Aharonov et al., 2017). Notably, both Popescu (2010) and Aharonov et al. (2017)
underscored how the interference pattern depends on the relative phase between the states of the
two possible paths

Ψ(x) =
1√
2

[
eiφ1Ψ1(x) + eiφ2Ψ2(x)

]
(79)

with Ψ1 and Ψ2 corresponding to the particle state going through slits 1 and 2, which has an absolute
phase designated by φ1 and φ2, respectively. However, the absolute phase of the quantum state is
unmeasurable�only the relative phase shift φ1 − φ2, which can be shown to be nonlocal, because
the particle passing through one of the slits depends on the potential in the other remote slit.

Here too, the nonlocal interpretation of the two-slit experiment has been challenged and alter-
native local models exist. For example, Catani et al. (2023) applies statistical restrictions on the
available knowledge of the observer, which turn out to be consistent with a classical (and realistic)

80It should be noted that quantum �eld theory itself is not free from nonlocality, which is inherent in its measurement process
formulation (Sorkin, 1993; Borsten et al., 2021; Papageorgiou and Fraser, 2024).
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local interpretation of di�erent variations of the interference experiment. In this interpretation, the
physical Reality does not depend on the observer (i.e., whether it is the particle or the wave nature
of the experiment that are being targeted in the measurement).

A di�erent type of interference e�ect using an entangled photon pair is found with intensity
interference cancellations (Brown and Twiss, 1956; Glauber, 1963), whereby a photon may be com-
pletely �forbidden� from certain positions, which would be allowed in an analogous classical setup
(Ghosh and Mandel, 1987). Intensity interference (also called fourth-order interference) may be
considered a nonlocal e�ect in its own right (Spasski�� and Moskovski��, 1984) and is commonly used
in entanglement experiments.

8.2.4 Accounts for entanglement nonlocality in quantum mechanics

While critics of nonlocality occasionally propose alternative local explanations that resolve the seem-
ing paradoxical nature of the nonlocal results (�8.2.1, �8.2.2, and �8.2.3), there has been a relative
paucity of nonlocal explanations that attempt to account for that mystery, which is otherwise im-
plicitly built into the quantum mechanical formalism.

Perhaps the earliest explanation goes back to the Bohmian interpretation of quantum mechanics
(Bohm, 1952a,b; see � 7.6), which fundamentally devises a nonlocal quantum potential that is a
constituent of the wave function itself (Bohm and Hiley, 1975). The quantum potential appears
to span the entire universe and is speci�cally able to connect entangled particles. However, the
existence and validity of the quantum potential is in question. The nonlocality here is inherent
to the higher-dimensional mathematical con�guration space, which still does not endow us with a
measurable underlying physical mechanism that is less abstract and can be accessed through Reality.

Other accounts have appealed for the existence of extra dimensions, often associated with a
particular topological structure that can allow for the entanglement to be maintained despite the
spatial separation. According to one conjecture, the spacetime Reality lives on a 4D geometry that
is the boundary of a 5D structure, held together by entanglement, which makes it the very thing that
gives rise to spacetime (Van Raamsdonk, 2010; Cowen, 2015). Going even further, the ER = EPR
conjecture equates the EPR entanglement with the concept of Einstein�Rosen bridge (ER bridge,
or wormhole, Einstein and Rosen, 1935) between black holes (Maldacena and Susskind, 2013). The
black holes may even be microscopic in size and hence quantum (Susskind, 2016). In another model,
a highly abstract graph-theoretic approach is used to unify quantum mechanics and gravity, in which
nodes may be proximately connected in the graph space, despite being distant in the corresponding
spatial metric (Markopoulou and Smolin, 2004).

In general, a higher-dimensional connection within the entangled subsystems, which can appear
distant in local coordinates but arbitrarily short in hidden spatial coordinates, was considered to be
the most viable avenue toward a solution of the nonlocality puzzle (Genovese and Gramegna, 2019).

8.2.5 Interim conclusion: The state of nonlocality in quantum theory

When the evidence of the various e�ects reviewed above is pooled, a reasonable conclusion is that
nonlocality may manifest when local e�ects do not. In all cases, the e�ects are predicted from
the formalism of quantum mechanics, which does not disclose any underlying, obvious mechanism
through which the speci�c e�ects emerge, which leaves much room for interpretations and is not free
from controversy. Therefore, we would like to propose a pragmatic take on the state of nonlocality
in quantum mechanics81, which can advance the present discussion: Nonlocality exists (cf. Bohm
and Hiley, 1975, 1993; Popescu and Rohrlich, 1994).

8.3 Frequency as an ontic nonlocal dimension

In light of the mounting evidence for nonlocal e�ects in quantum mechanics, and despite several
alternative explanations that have pushed back against the various nonlocal interpretations of these
e�ects, we proceed to explore how an ontic frequency dimension may account for nonlocality. We
begin by arguing for why frequency is inherently nonlocal. Then, we consider a Reality of 5D
objects that comprise part local and part nonlocal elements. We proceed to apply Theorem 1 in the

81Presently in consensus with the mainstream opinion in the �eld, judging by the recent (2022) Nobel award given to John
Clauser, Alain Aspect and Anton Zeilinger �for experiments with entangled photons, establishing the violation of Bell inequalities
and pioneering quantum information science.� (https://www.nobelprize.org/prizes/physics/2022/press-release/; accessed
9.10.2024.)

https://www.nobelprize.org/prizes/physics/2022/press-release/
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general context of the three nonlocal quantum e�ects mentioned above and examine how frequency,
as a nonlocal dimension, may provide a key to understanding them. Finally, we consider whether
frequency should be thought of as a hidden variable, and whether the ontic existence of frequency
may be su�cient to fully account for nonlocal e�ects.

8.3.1 Nonlocality of frequency

Nonlocality of frequency can be gathered from several of its properties. First, frequency cannot be
reduced to either one of the two dimension types even with the additional assumption of determinism,
despite the very close connection with both space and time (�3). Speci�cally, it was argued that
frequency is dependent on physical parameters that exist in spacetime, but are not spacetime (�3.1.4).
Second, the Fourier transform operation (Eq. 40)�the basis of much of the insight obtained about
the relationship between time and frequency�requires integration over the entire domain. Therefore,
to determine the temporal frequency (or spectrum) precisely, we need complete information about
time (nonlocality in time), and equivalently, to obtain the spatial frequency we require all of space
(nonlocality in space). The nonlocality in time and space can be somewhat mitigated through
precise knowledge of the system's history, or through appropriate windowing (�3.5.6). Yet, it can
never be completely eliminated due to the uncertainty principle that requires a �nite window width
for minimal spectral precision, as well as due to the compact support paradox that entails that
either one or both the duration and the bandwidth are in�nite. Third, these properties are also
mirrored in the role that frequency has in perception: it is generally not perceived as a `how often'
experience, but rather as something completely di�erent�a certain percept that somehow maps
aspects of Reality that are detected by the di�erent senses. The percept associated with frequencies,
though, need not be localized: we can imagine or sense green, or G minor, or the texture of a
strawberry without necessarily localizing it in space or time.

These nonlocal properties, though, do not relate directly to the question of whether frequency is
an extra dimension or not. If the extra frequency dimension of P3 has any ontic validity, then in
addition to these �standard� nonlocality properties that characterize frequency, it may also have the
extra capability of delivering some of that spooky action at a distance, being neither in space nor in
time.

8.3.2 Five-dimensional objects and entanglement

There may be more than one way to understand Reality according to Theorem 1. In the context of
the nonlocality problem, we adhere to an interpretation that has Reality as 5D but the observer has
a choice of whether to treat it as such (namely, as P3), or as lower dimensional, by setting di�erent
boundaries to the involved systems82. As a corollary, we propose to extend the idea of objects of
perception from 3D to 5D, so that any physical object comprises three local spatial dimensions, one
local time dimension, and one nonlocal frequency dimension. The nonlocality here is literal: it lies
outside of space and time.

In the context of entanglement, the key point is to think of the entangled quantum system as an
object�something that goes back to a comment made by Aspect (1999): �We must conclude that
an entangled EPR photon pair is a non-separable object; that is, it is impossible to assign individual
local properties (local physical reality) to each photon. In some sense, both photons keep in contact
through space and time.� This statement echoes Schrödinger (1935), who wrote: �Whenever one
has a complete expectation-catalog�a maximum total knowledge�a Ψ�function�for two completely
separated bodies, or, in better terms, for each of them singly, then one obviously has it also for
the two bodies together, i.e., if one imagines that neither of them singly but rather the two of them
together make up the object of interest, of our questions about the future.� And �nally, from the
same paper: �The whole is in a de�nite state, the parts taken individually are not.�83 To see how
this relates to the frequency dimension, we refer again to the form of the two-particle entangled state
of Eq. 75 and modify it to express a general parameter that can be used as a degree of freedom

|Ψ⟩ = 1√
2
(|A⟩1 |B⟩2 ± |B⟩1 |A⟩2) (80)

82The choice, however, may be constrained and therefore not all three modes are always available to choose from.
83It should be noted that not all entangled states necessarily entail nonlocality (e.g. Barrett, 2002; Méthot and Scarani, 2006;

Brunner et al., 2014; Schmid et al., 2023). We focus here only on those entangled states that are nonlocal.
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where the states A or B correspond to a discrete or continuous internal degree of freedom of the
system that is used for di�erentiating the particles 1 and 2 (usually photons, but any particle
combination would do)�spin, polarization, spatial momentum, orbital angular momentum, and
time�energy (i.e., frequency). The standard notation of Eq. 80 is highly simpli�ed, and thus, implicit
to each particle state is its frequency dependence84. Regardless of the state of the particle A or B,
each term of the entangled state, |A⟩1 |B⟩2 and |B⟩1 |A⟩2, has the same frequency dependence, so
both terms on the right-hand side of Eq. 80 cannot be distinguished based on their frequency content
alone. In more complex, multi-particle states, the allocation of frequencies to the entangled state
terms is generally more complicated (e.g., Greenberger et al., 1990; Keller et al., 1998; Aoki et al.,
2003; Shalm et al., 2013; Seshadri et al., 2022). For example, in a four-state frequency-bin entangled
system, photon pairs are generated such that each photon can have one of two available frequencies,
so that the photon pair has four possible frequency combinations (Seshadri et al., 2022). In this
con�guration each frequency component is found in two subsystems out of the four that make the
entangled state.

8.3.3 Theorem 1 and nonlocal e�ects

Let us analyze the standard Bell test scenario according to Theorem 1. From the analysis of the
measurement problem (�7), we know that the system is generally described as P1 before measurement
and P2 afterward. Unlike the general case, though, there is an entanglement moment in the Bell
test that is distinguished: when it takes place, the di�erent subsystems momentarily become a
single object. It means that it happens when time is dimensional�something that can be captured
either within P2 or P3. However, as the particles that are being entangled �do not know� their
future during that moment�they do not carry information about their measurement later in the
experiment�this distinguished moment is necessarily indeterministic, which makes it a P3 moment
and not P2. This is also the case because even though the entangled state still appears as P1 from
the outside (or rather, it is modeled as such, given that a measurement has not taken place yet), the
two subsystems are open systems to one another, within the scope of Theorem 1. Con�rmation of
this idea may be gathered from experiments by Moreva et al. (2014), who showed how an entangled
pair of photons can appear to evolve in time internally, whereby one photon serves as a clock to
the other (the �Observer � mode, corresponding to our P3), but when the two are measured as a
single system from the outside, they appear static (the �Super-observer � mode, corresponding to our
P1). Back to our analysis, the measurement �nally triggers the instantaneous wave-function collapse
across the system. It then causes the e�ective elimination of the frequency dimension as the system
produces deterministic observation�belonging to P2�which no longer admits spooky action at a
distance and thus appears local.

The remaining question is what evidence we have to justify the claim that the system internally
behaves as though it is in P3, in which frequency is dimensional. Here are three relevant examples for
the role of frequency out of several known secondary nonlocal e�ects that have been demonstrated for
entangled systems and have no classical analogs. The �rst e�ect is nonlocal dispersion cancellation85.
As a rule, pulses that propagate in dispersive media temporally broaden�their shape deforms.
Most generally, dispersion can be approximated around the center frequency of the pulse ωc (with
corresponding kc), with the spatial frequency depending on temporal frequency through k(ω) =
kc+α(ω−ωc)+β(ω−ωc)

2+. . ., where α and β are real parameters. Broadening goes as∆τ ≈ 2∆ωβd,
where ∆ω is the bandwidth of the pulse and d is the distance traversed in the dispersive medium.
When two photons are entangled, it can be shown that the dispersion broadening accumulated by

84For instance, in the context of spontaneous parametric down conversion (SPDC)�by far the most common method to generate
entangled photon pairs�a single �pump� photon at frequency ωp is nonlinearly converted to an entangled pair of �signal� and �idler �
photons, related through conservation of energy with ωp = ωs + ωi, as well as conservation of momentum kp = ks + ki (Burnham
and Weinberg, 1970; Couteau, 2018). The simpli�ed state can be expressed as |Ψ⟩ = 1√

2
(|Hi⟩ |Vs⟩ + eiϕ |Vi⟩ |Hs⟩), where H is

a horizontal polarization state, V is vertical polarization state of either the signal or the idler photons, and ϕ is a relative phase
that can be modi�ed (e.g., Kwiat et al., 1995). Shih (2003) derived an explicit corresponding state function for the similar state,
|Ψ⟩ = 1√

2
(|o1⟩ |e2⟩+ |e1⟩ |o2⟩), which is de�ned according to the perpendicular (ordinary, signal) and parallel (extraordinary, idler)

polarizations. The corresponding state function is then |Ψ⟩ =
∑

o,e δ(ωo + ωe − ωp)δ(ko + ke − kp)a
†
o(ω(ko))ô a

†
e(ω(ke))ê |0⟩,

where a†o(ω(ko)) and a
†
e(ω(ke)) are the creation operators of the two photons from the vacuum state |0⟩, in the ordinary ô and

extraordinary ê directions, respectively. The second delta function may be replaced with a more precise expression for a �nite
thickness of the nonlinear medium (Shih, 2003).

85The dispersion here relates to the group velocity dispersion, which is a second-order e�ect that deforms the envelope / group
velocity of a �nite-duration pulse and depends on the frequency square, in contradistinction to the linear dependence on frequency
in regular (phase-velocity) dispersion.
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one photon can be canceled out by applying the same amount of dispersion on the other photon, only
with opposite sign of the dispersive coe�cient β (Franson, 1992). A related nonlocal e�ect is of timing
(time-of-arrival) correction using a dispersive medium for only one photon from an entangled pair,
but without causing the classical broadening associated with dispersion, which gives rise to a fourth-
order (intensity) interference (Steinberg et al., 1992a,b). The third e�ect is of sinusoidal frequency
(or amplitude) modulation of one photon that can be observed on its entangled photon pair, so
the combined modulations on the two add up nonlocally, either constructively or destructively,
in the intensity interference pattern (Harris, 2008; Sensarn et al., 2009). All three e�ects involve
continuous temporal and spectral changes to the photon spectrum and to the entangled state. While
the mathematical analysis of all e�ects is generally done using Fourier transforms in a deterministic

manner�just like in the radio example (�6.3)�the indeterminism inherent to the entanglement, the
frequency dependence of all quantities, the distinction of the di�erent time points, and the process
that unfolds over time, renders this mode wholly P3, also much like in the radio example.

Theorem 1 indicates that there may be a discontinuity in switching between the three modes,
which in the case of entanglement and nonlocality measurement should show as a discontinuous
change between P3 to P2. Several Bell tests have estimated the speed in which the correlation
seems to be nonlocally triggered / communicated between the two distant particles. In the most
dramatic example, a lower bound in excess of 10000 times the speed of light has been reported for
a loophole-free Bell test over 18 km separation between the entangled photon pairs (Salart et al.,
2008). The general e�ect of discontinuity due to mode transition (� 6.5), therefore, seems to be
con�rmed through the instantaneous correlation between the nonlocal parts of the entangled pair,
as they revert to being strictly local and deterministic at measurement.

The other nonlocal dynamic e�ects we brie�y reviewed above may be subjected to similar analysis,
although somewhat more di�cult to motivate because of the lack of an �obvious� nonlocal 5D object.
Rather, we have to assume that all quantum objects, before measurement, can be internally described
as P3. In the Aharonov�Bohm e�ect, the electron beams appear to experience a nonlocal interaction
with a remote electric or magnetic �eld. The latter can be understood as causing modulation in
the spatial frequency domain of the two electron beams (i.e., their momentum), with the lack of
any other sources that may cause local modulation. (The electric e�ect would have an analogous
modulation in the temporal frequency domain of the electrons.) Indeed, the original analysis of
the e�ect admits a phase-modulation-like e�ect that enters the expected phase of the interference
pattern (Aharonov and Bohm, 1959). Similarly, in the case of the two-slit experiment, the nonlocal
phase di�erence that characterizes the interference pattern can be thought of as phase modulation
that a�ects the frequency of the particle or wave, should it be taken to have complex amplitude.
Although the absolute phase of the quantum state has no known physical role, if particles are 5D
objects, they can nonlocally interact in the frequency dimension, where they coincide, but with
respect to their relative phase. See discussion about a complex frequency dimension in �9.6.

8.3.4 Hidden local and nonlocal variable models

The nonlocal-frequency-dimension explanation applied to entanglement may get away with at least
two paradoxical pitfalls, which may be more semantic than theoretical. First, frequency is not a
hidden variable per se. In the state representation that explicitly contains the frequency dependence,
it is not hidden�it is already part of the theory and is found in every state function (either as ω
or k). It is also not a variable per se, but rather a dimension in P3, and a parameter in P1 and
P2. Second, having frequency as an extra dimension does not contradict a Reality that is sometimes
�ve dimensional. While highly unintuitive, Theorem 1, as well as the entire premise of this work,
is geared to expand the concept of Reality in a way that is consistent with our psychophysical
experience and brain structure, as well as with our mathematics, physics, and engineering practices.
In this sense, Einstein's concern that spooky action at a distance violates Reality is warranted only
if Reality cannot accommodate for spooky action at a distance.

8.3.5 What else is there to nonlocality?

Even if the hypothesis that frequency exists as a nonlocal dimension is correct, it is unlikely to fully
account for the underlying mystery of nonlocality. The main di�culty is that even if the frequency
dimension indeed exists and can provide the necessary link for the entangled particles, they may
not be uniquely identi�ed by it, or by the time�frequency combined coordinates (or time�bandwidth
product; see, for example MacLean et al., 2018). Other systems such as additional pairs that are
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produced in the very same experiment may be identically tuned and have an overlapping time�
frequency coordinates, perhaps with di�erent instantaneous phase, and yet are not entangled to
that pair. If the time�frequency coordinates of a nonlocally entangled system are its only identi�er,
then it would stand to reason that random pairs, identically tuned, somewhere in the universe, would
get spontaneously entangled to the pair under test and they would be creating some disturbance
to the observed pair. If this were true, then it would add an unknown amount of random noise
to every Bell measurement, as well as to local entanglement studies, through the weakening of the
entanglement of the system under test due to the �monogamy of entanglement� property (Co�man
et al., 2000; Osborne and Verstraete, 2006). Therefore, there seems to be missing some kind of unique
identi�cation for the particles that can exist in a nonlocal space, which holds the information about
the speci�c particle pair entanglement and distinguishes it from other, otherwise identical, particles
that may coincide with the same nonlocal coordinates. We note that this shortcoming may not be
unique to the present account of nonlocality. However, it is a tenet of quantum physics that particles
of the same type are indistinguishable, so the suggestion that they can be uniquely identi�ed is highly
speculative. Alternatively, and perhaps even more bizarrely, the frequency dimension should remain
private for the entangled pair.

Theoretically and in line with the logic of loophole-free Bell tests, we would always prefer to
default to the local explanation and maintain a nonlocal one as a last resort. However, the nonlocality
that a century of quantum mechanics has uncovered stems from the very essence of its theory: the
quantum state, the divide between the stationary time evolution and the measurement operations,
the uncertainty principle, and the associated lack of commutativity between conjugate operators.

For further discussion see �9.9.1.

9 Discussion

This work began with pointing to the central role of frequency in sensation. It was argued that the
perception of frequency is typically abstracted from its standard (�how often�) physical meaning,
while typically being well-di�erentiated from the perception of both space and time. Contrasting
the notion of extra dimensions in physics and in perception, we asked whether there is grounds for
counting frequency as an extra dimension that is distinct from time and space. However, it was not
possible to answer this question in a straightforward manner, because of the complicated, paradox-
ridden, and even elusive interrelationship that frequency has with time: frequency is interwoven
with time measurements, where it normally appears as a parameter that is the reciprocal of the
period. In other contexts it appears as the reciprocal of the time variable itself, while yet in some
other contexts it appears as a variable that is on equal footing with the time. We further scrutinized
the possibility that frequency may serve as a dimension, by contrasting its properties with some of
the key properties of the space and time dimensions of Reality. The analysis was encapsulated in
Theorem 1, which counterintuitively tied together the dimensional status of time, frequency, and
the status of determinism. The validity and applicability of the theorem was explored from wildly
di�erent perspectives in several examples that ranged from the simple epistemological application to
the intricate and provocative ontological. The �nal example culminated in the suggestion that the
nonlocal nature of frequency may be the underlying basis of quantum entanglement and nonlocality.
The overall analysis, however, leaves much to be answered, and, undoubtedly, contested.

In this �nal section, we discuss several open questions that require further consideration and
work.

9.1 Is frequency the correct quantity?

The entire premise of this work revolves around the possibility of temporal variation in frequency,
which in itself is related to all other fundamental parameters or variables in oscillatory and wave
motion. We argue that frequency is the most informative of them all, although it may not be obvious
that this is indeed the case. Below are some arguments to favor frequency over other possible choices
of related quantities.

9.1.1 Frequency and not period

The most basic de�nition of frequency (Eq. 1) describes how often an oscillation occurs and equates
it with the inverse of the period T�the �xed duration of perfectly repetitive oscillation. Just as
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the instantaneous frequency (�3.5.7) is de�ned, there is no di�culty to talk about instantaneous
period T (t) that varies around the mean period and is the reciprocal of the instantaneous frequency.
Conveniently, it is measured in time units and is easier to understand than instantaneous frequency.
Inconveniently, it overlaps with the time axis and is often not well distinguished from time when
taken to in�nity (see �3.4.2 and �3.4.3). Computationally, it requires the reciprocal of the derivative
of the phase

T (t) =

(
dθ

dt

)−1

(81)

which is also unhandy. Frequency is somewhat more arcane of a concept to explain, though, being
a reciprocal quantity, but easy to observe if thought of as a (real) number of cycles (or repeti-
tions) per unit of time. It is also easier to relate to an arbitrary dimension�namely, any spatial
dimension�where the meaning of frequency is retained, abstracted from the type of dimension at
play (periodicity can apply to space too, but has a predominant semantic connotation of time).
Importantly, dimensional frequency allows for negative values, which are conveniently continuous
with the non-negative ones by virtue of the assumed validity of zero frequency. In contrast, the same
cannot be achieved with the instantaneous period, which has to be continuous between −∞ and +∞
to correctly map the frequency axis, but has a singularity at 0. For all these reasons, dimensional
frequency should be favored over dimensional period.

9.1.2 Temporal frequency and not spatial frequency

Wave dynamics is de�ned through the relationship between the spatial and temporal parts of the
oscillatory motion. As was seen in �3.1.3, the wavenumber k is also the magnitude of the propagation
vector of the wave, so the directional components are three spatial frequencies, kx, ky, and kz,
which may be independent from one another (Fig. 8). In this sense, a spatial frequency spectrum
in which the direction varies dynamically in three-dimensional space would be three dimensional
as well, whereas the temporal frequency spectrum is only one dimensional with the three spatial
components projected on the time dimension. Therefore, the latter can be thought of as being
more parsimonious, as well as geometry-agnostic. It also applies directly to oscillators that are
not explicitly modeled with respect to spatial variations, and hence, it is more universal. However,
it is important to remember that the two frequencies are related through the dispersion relations
(expressed either as ω = ω(k) or k = k(ω)), so the information about the spectrum of one frequency
type along with the dispersion formula of the medium should ideally be su�cient to derive the
spectrum of the other (Fig. 17).

9.1.3 Frequency and not wavelength

The wavelength is the reciprocal of the wavenumber times 2π, which makes it the spatial analog to
the period. Thus, the same arguments apply here as for the period (�9.1.1) and spatial frequency
(�9.1.2).

9.1.4 Frequency and not energy

In quantum mechanics, the energy of a photon is related to its frequency through the proportionality
factor that is the Planck constant h (Eq. 65). Additionally, all energy level transitions within
quantized systems, involve either emission or absorption of photons, which correspond to sharp
frequencies. Thus, in the context of a single photon with a sharp spectral line (constant frequency),
the energy and the frequency contain the same information. However, in more complex systems
energy can take di�erent forms and can be transformed between them, so that this neat relation
may no longer have any observational relevance. Furthermore, in many classical systems, there tends
to be a deterministic relationship between the energy and frequency that is not as straightforward
as the simple quantum one. Even when an explicit expression that ties frequency and energy is
unavailable, it is possible to express the signal spectrum as an energy density function that can be
integrated over a frequency interval to obtain the energy in a particular bandwidth (see � 3.5.6).
Given all that, except for the simplest quantum systems, substituting energy for frequency in the
dimensional context would only have an obfuscating e�ect on modeling.
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9.1.5 Frequency and not phase

The most immediate de�nition of the instantaneous frequency is the derivative of the time-dependent
phase function (Eq. 59). Therefore, the phase function can be obtained from the frequency function,
up to a constant phase term. Moreover, when synchronized oscillations are modeled in nonlinear
dynamics, the instantaneous phase serves as a generalized coordinate, along with its derivative, the
instantaneous frequency (�3.5.9)�something that could be analogized to using displacement and
velocity in standard Cartesian coordinates. This suggests that it is maybe the phase and not the
frequency that should be considered the most informative quantity to serve as a dimension. Or
rephrasing it in the negative�just as we would not prefer to have three dimensions of velocity
instead of position, perhaps we should not prefer frequency over phase. Indeed, in the closest 5D
theoretical model to the present work, Wiener and Struik (1928) opted for a �fth phase dimension,
making more explicit the Klein (1926) 5D model that added a small spatial dimension x0 that is
curled by being inserted in the argument of a periodic exponent eikx0 .

However, there are several reasons for why using the phase is considerably less attractive than fre-
quency. First and foremost, there are many situations in which the phase function cannot be directly
measured, nor perceived. For example, at the light frequency range of the electromagnetic spectrum,
incoherent imaging is the standard (also in vision), as only the intensity can be detected and not
the amplitude or phase of the light waves. Similarly, the power spectrum model of hearing, accounts
for the insensitivity of the ear to phase changes with many typical stimuli (see references in Weisser,
2021, pp. 113�114). It has been successfully employed in numerous audio applications, which rely
on a frame-based, time-windowed computation of the acoustic signal and are not concerned with its
instantaneous phase or frequency�only with moving-average kind of quantities, within each frame
(see �3.5.6). A similar way to state the same thing is that there are many situations in which we do
not care about the exact part of the period where the oscillating system is positioned, but rather,
how often it oscillates on average (Eq. 61), which is much easier to estimate. Yet another way
to restate it is that for signals that are stochastic there is no valid phase function, and yet their
frequency can be validly estimated statistically (�3.5.2��3.5.5). In realistic broadband signals, the
situation can be even more complex, because there may be no unique way to represent the phase of
the di�erent carriers, unless they are well separated in well-de�ned narrowband channel boundaries
(Boashash, 1992).

Another reason to disfavor the instantaneous phase is that even if it does exist, it is constantly
changing, even at times when frequency is, for every intent and purpose, constant. Therefore, fre-
quency is more parsimonious, as it expresses the same thing using a single number (in the quintessen-
tial case of a constant frequency) rather than a function.

Finally, following from the previous two reasons, the instantaneous phase function carries little
unique information, because the (wrapped) phase values are bounded on a 2π interval. Therefore, a
random sample of the phase function would not give any orientation for the frequency range in which
the system oscillates without further calculations. In contrast, the frequency range is unique and
provides a much more informative description of physical phenomena, which matches perception,
and in general, a slower observation of the physics at hand.

9.2 Challenges to the inclusion of frequency as its own dimension

9.2.1 Role of frequency in partial di�erential equations

Partial di�erential equations in physics distil the complete dynamical account of the systems they
model. Only few of the simplest such equations were mentioned in the section about wave motion
(�3.1.3). In many of those equations, frequency never appears explicitly in any of the parameters,
but may instead be indirectly parametrizing another parameter, giving rise to dispersion, or to
another form of frequency dependence that is implicit to the problem. Only few equations explicitly
model spectral dependence as an additional variable, whose derivatives with respect to time and
space appear in the equation86. However, unlike the other dimensions, derivatives with respect to
frequency itself do not generally appear in those equations for the complete description of any system.
What is the point, therefore, of adding frequency dependence to an already complete description?

To answer this, we have to backtrack brie�y and understand what such partial di�erential equa-
tions assume. The entire premise of these equations is to provide a complete description of well-posed

86The notable exception are nonlinear di�erential equations (usually ordinary rather than partial) that model the complex
dynamics of synchronized oscillations, which rely on instantaneous phase and frequency functions (see �3.5.9).
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problems, where the system is by de�nition isolated from the rest of the universe (P1) or the system
is the universe itself for the sake of the problem (P2). Those parts of the universe that are considered
pertinent to the dynamics of the system should be recognized and appear as additional terms in
the equation. Nothing else but them exists in the problem formulation, which by its very de�nition
does not have room for unknown unknowns. In contrast, for frequency to be its own dimension, the
system must become open (P3). Its open boundaries, if they are at all de�ned, may or may not be
breached by external forces whose magnitude, direction, and duration are unknown and cannot be
predicted with certainty, although they may be tracked. These types of problems with uncertain
inputs and outputs often require the help of signal processing techniques that are not committed to
a speci�c problem con�guration and are more generally capable of dealing with real-time processes,
often with the aid of a statistical baseline around which local variations are quanti�ed. Hence, it is
impossible to express in closed-form the lack of knowledge while retaining a deterministic dynamics
of the equation. Rather, these uncontrolled inputs, inasmuch as they exist in observation, may be
regarded as unwanted noise and uncertainty. If large enough, it would cause for a measurement to
fail. An example for this idea was given in �6.2.

9.2.2 Possible con�ation of di�erent types of frequencies

When translated back to the perceptual domain, an extra-dimensional physical reality may lead to
con�ation between frequencies whose source is macroscopic (e.g., touch and sound) and frequencies
whose ultimate source is electromagnetic (e.g., vision, electroreception in �sh, infrared thermore-
ception in snakes and lizards). The macroscopic quantities represent vibrations or other mechanical
oscillations, whereas the electromagnetic frequencies stem from quantum processes at the subatomic
or molecular level. It is not clear that the frequency dimension universally converges between these
senses or others, although recent evidence suggests that the low-frequency sound and high-frequency
tactile vibrations�both below 1000 Hz�are processed by the same cells in the inferior colliculus
of the midbrain (Huey et al., 2025). More generally, however, although the low modulation-band
frequencies of di�erent modalities may become comparable after demodulating the sensory input,
they are generally not perceived as equivalent once in the di�erent modality pathways (perhaps with
the exception of special cases of synesthesia or a strong sensory binding of stimuli emanating from
a common source).

9.2.3 Multiple frequency dimensions

Another challenge is that the frequency dimension may not be singular. Physical objects have
multiple frequencies going on simultaneously, which can be understood as independent degrees of
freedom�some representing oscillations or vibrations while others map to rotations. For example,
a rigid body has three degrees of rotational freedom�each of which can be taken as one frequency
dimension corresponding to one axis. One option is that in perception, all of these frequencies are
projected on a single dimension, so that the union of all dimensional frequencies is perceived as the
spectrum of a single object. More complicated options may include more than a single frequency
dimension in perception either in all or in a subset of the available modalities. Or alternatively, in
some cases independent low-frequency information modulates high-frequency carriers and becomes
its own dimension after demodulation (for example, see arguments for a two-dimensional spectrum
in hearing; Weisser, 2021, p. 123�125). See �9.3.

9.2.4 Trivial addition

In a sense, the addition of frequency as a mandatory dimension to space and time is trivial. For
example, the universe is mapped through observations at di�erent electromagnetic wavelengths, as
there are dedicated instruments for radio, microwave, infrared, light, ultraviolet, x-ray, and gamma
radiation astronomy. While the objects on the resultant maps are taken as 3D projections, their
existence is only revealed if observed in the appropriate spectral (and temporal) windows. If observed
in the wrong wavelength, they are e�ectively invisible. This is not all that di�erent from the sensory
inputs to perception. Objects can be completely invisible (either dark or transparent), unless they
produce or re�ect light in the visual range, sound in the audible range, etc.87. Any notion of

87However, regardless of their far-�eld detectability, solid objects seem to be always detectable by touch, as long as they are
large enough to actuate some of the mechanoreceptors in the skin, or to forcefully act on the body. Even here, though, a totally
static tactile stimulus�one that never changes (i.e., zero relative velocity between the object and perceiver) can be modeled as
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triviality, though, re�ects a parametric approach to frequency, in which time-invariant �ltering is
su�cient to extract average, coarse spectral information about the object, which is ultimately static
in nature. Instead, we emphasized the time-varying nature of spectral information whenever real-
time applications require it, as is most obviously the case in perception.

9.3 Nested dimensionality

It was mentioned several times along the analysis that there is an association of low-frequency
modulations with the emergence of a frequency dimension that is locally analyzed, within a certain
time window and spectral bandwidth. Within this time�frequency locus, however, all the limitations
of frequency analysis still apply�primarily the uncertainty principle (�3.5.6). So, for example, we
may be able to demodulate a signal and precisely eliminate a high-frequency carrier from it, in which
case we are still left with a low-frequency baseband, whose frequency content may be determined
using more or less precise analytical tools. Given that there is no mathematical limit to how many
layers of signal modulation are possible, it is possible to characterize further demodulated signals
using the same three modes, in which no-time, determinism, and frequency have a mutually exclusive
relationship. A commonplace example is speech, which contains audio-range carriers at frequencies
above 100 Hz that are naturally modulated at lower frequencies, typically peaking at around 3�4
Hz (Steeneken and Houtgast, 1983; Drullman et al., 1994). Further nesting is possible if we let such
naturally modulated audio signals modulate radio carriers of frequencies in the hundreds of kilohertz
and higher. Incidentally, the sense of hearing itself is sensitive to both carrier- and modulation-
domain frequencies88 and information from both is extracted continuously when listening to speech,
music, or any other sound. Therefore, hearing appears to constitute an organic example of a nested-
dimensionality system. Whether nesting is strictly mathematical and epistemic or has additional
ontological correspondence remains an open question.

9.4 Implications on time as a dimension

Despite the importance of both time and frequency in the harmonic analyses of numerous physical
systems, only time has been nominated as an own dimension (although not without dissent; e.g.,
Barbour, 1999; Rovelli, 2019). Moreover, to my best knowledge, in the various musings about time,
frequency has never been considered a relevant concept in the discussion, beyond being a necessary
component for building clocks�the essential measurement tool to estimate the passage of time
(Audoin and Guinot, 2001). This implicitly assumes that the concept of frequency is not plagued
by similarly crippling paradoxes. The applied mathematical and engineering literature, however,
suggests otherwise (Boashash, 1992).

The current analysis still gives primacy to time that is distinct from periodicity as the �rst
intangible dimension to emerge out of a 3D spatial reality, yet it demonopolizes it from being the
only one (� 4.1.8). Because the de�nition of frequency is intertwined with periodicity, time, and
many other speci�c physical parameters, it may appear to be somewhat less mysterious than time,
and perhaps more amenable to a straightforward de�nition. However, the mathematical nature
of the de�nitions of instantaneous frequency, as well as their highly indirect nature that requires
some knowledge of physics in order to explain them, seem to make it no less abstract than time.
The complicated story behind frequency�its earliest de�nitions, slow mathematical evolution in
establishing the pro�ciency for working with it, the late development of physical �lters and the theory
behind them�may render it more suspect than time in its primacy. And yet, this intertwinedness
with time may be seen as part of Reality that only compounds the underlying mystery of it, rather
than alleviates it.

Theorem 1 formalizes the conditions for which time can be elevated to become (or emerge as) its
own dimension, rather than a parameter. This may add some weight on the age-long controversy
about the nature of time and its role in Reality�whether it is a real property of the universe, or
an emergent one that only serves our perception of it. The ideas and results that were derived here
by following the strict de�nitions and application of frequency that concluded in realities of type P1
and P2 are not unlike those that were reached at using much more elaborate physics (Rovelli, 2019).
The convergence of these markedly di�erent approaches gives credence to the radical and perhaps

being exactly 0 Hz in its Fourier frequency sense�is arguably not going to be registered by perception as a valid stimulus (think
of the �oor under your feet when seated motionless for a very long time, before you read those very words).

88Some authors referred to the modulation spectrum as the periodicity domain of hearing, and to the corresponding mapping
as periodopy to distinguish it from high frequencies that are perceived as tonal and are mapped by tonotopy (Langner, 2015).



84 Discussion

unintuitive notion that time is an emergent dimension of Reality, rather than a fundamental one.
Nevertheless, even in P1, time appears as a manifestation of periodicity, which we understand as a
parametric incarnation of time, only not one that produces events that can be reliably distinguished
from the whole, given that the notion of past, present, and future appears void. Therefore, saying
that time altogether does not exist may be a stretch, or a de�nitional or logical matter (McTaggart,
1927 / 1993). Instead, the notion that time may be fundamental to Reality (Smolin, 2019)�albeit
a changing notion of time as the modes change�may be more in line with the present work.

See �B for further metaphysical connections between Theorem 1 and time.

9.5 Boundaries

The formulation of Theorem 1 is implicitly reliant on a particular con�guration of the boundaries
around physical systems, where it was argued throughout that di�erent choices on how to bound
the system can lead to di�erent dimensionality in the physics itself�whether only apparent or
real. It begs the question, though: how are boundaries set? And, is there complete freedom to
arbitrarily position the boundaries in space around what we consider as being �the system�? Why
are some con�gurations justi�ed and others are not? In most analytical problems, the choice is more
or less inferred from the problem de�nition, where a person (the scientist) sets the problem and
decides what is pertinent to its solution and where the mathematics and geometry can be facilitated
or approximated while maintaining rigor and convergence with relevant empirical �ndings. An
insightful remark by Boltzmann (1974 / 1899, pp. 119�120) aptly describes the situation we face
upon deciding what the appropriate boundaries are for a given system we are interested in: �We
must therefore include the whole Earth as part of the surroundings of a gravitating body, but leave
the Moon and stars out of account, since they have no noticeable in�uence. It is thus once again a
pure assumption, to be subsequently justi�ed by experience, that we can always draw the boundaries
of immediate surroundings in such a way as to include all essentials, and thus actually arrive at
a formulation of laws of motion.� However, in Reality that is not actively modeled by anybody,
it is not at all clear that any of this reasoning has any bearing whatsoever. For example, if a leaf
falls on a rock, neither does the leaf nor the rock should �care� about maintaining their boundary,
which�in our human eyes�is likely to be visually obvious and robustly maintained for a long while
after impact.

In the discussion about the measurement problem of quantum mechanics, the boundary-setting
problem is a common thread, as di�erent interpreters (including the present account, should it be
mistaken for one) sometimes have di�erent takes about the closedness of the quantum system before
and after the measurement (�7). In the present account, this extended dramatically to the realm
of quantum nonlocality as well, where only the change of boundaries could disrupt the apparent
nonlocal e�ects that make a 5D object whole (�8). Actively maintained boundaries seem to be
a biological feature across all domains of life, where membranes are the fundamental structures
that spatially and temporally regulate what is inside and outside to the organism (Watson, 2015).
Although much of it may be achieved automatically on a biomolecular and biophysical level, it is
arguable whether, as lifeforms get more complex, it is possible (or even conceptually coherent) to
maintain boundaries without agency. Does a tree maintain its boundaries actively or the tree simply
is�passively being molded and breached throughout its life? Or, even if taken to an extreme�
suppose we have a high-power computer program that is connected to mechanical hardware that
allows it (the computer + software + auxiliary hardware) to maintain its boundaries, expand, or
contract, so it is automated on some level. This program still had to have been initiated by some
agency, if only through a very primitive program or goal to set it o�. Otherwise, it is hard to
make sense of the notion that the computer program genuinely �cares� about its boundaries in any
sense that we can relate to as conscious beings, whose very lives depend on the properties of its
membranes�both real and imagined89,90.

A �nal comment would be in place regarding boundaries that de�ne objects. In classical op-
tics and mechanics, objects are de�ned geometrically, as three-dimensional entities that have some

89For a dramatic example, this video shows the death of a photophobic protozoa of genus Blepharisma, whose membrane is
ruptured due to light exposure: https://www.youtube.com/watch?v=4bj6SqgT4SQ (�Single-celled Organism Dies� by James Weiss,
uploaded on 25.12.2018, accessed 30.12.2024).

90I have not been able to �nd a discussion in the literature about boundaries that speci�cally considers the essential role of
agency in de�ning them. However, a quote from Mermin (2012) in the context of QBism as an interpretation for quantum theory
(�7.6) comes close to what I expounded on above: �Shiftiness, vagueness, and ambiguity all arise from a failure to realize that like
probabilities, like quantum states, like experience itself, the split belongs to an agent. All of them have their own split.�

https://www.youtube.com/watch?v=4bj6SqgT4SQ
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structure related to their in shape, composition, dynamics, etc. As long as time is parametric only
(P1), the object simply vibrates and moves, but it may not come in and out of existence. If time
is a dimension too, though, then the object boundaries can be de�ned temporally as well, which
can then include the entire history of the object in space. Given Slepian's compact support paradox
(�3.4.5), we know that a �nite object in time�one that can be de�ned using a �nite time support
function�would necessarily have a spectrum with in�nite support, which does not meet an intuitive
criterion of a physical object that is �nite in all dimensions. Therefore, it is consistent that P2 best
entails four-dimensional objects, but not �ve dimensional, so parametric frequency is omitted from
the object description. Finally, if we want to refer to �ve-dimensional objects notwithstanding, then
we can take it in P3, but then we lose the rigid spatial boundaries from before: we get to have a 5D
object that is local, but we do not control its spatial extent, because the system referred to is open
and need not conserve energy, matter, or anything else. This simple conceptual analysis that spells
the inherent relations between dimensionality and boundaries according to Theorem 1 contains the
seed of nonlocality that was argued for in �8.

9.6 Complex amplitudes

One aspect of the proposed frequency dimension has been only mentioned in passing and was largely
left out of the discussion throughout the text: the Fourier spectrum that characterizes both P2 and
P3 requires two numbers per frequency point: amplitude and phase. The phase cancels out in
power spectral estimates as are employed in P1, but it is essential to accurately reconstruct some
other types of spectra. There are di�erent ways to express this duality�the most common of
which uses the complex exponential, which has a real frequency, but can take a complex amplitude
that incorporates the phase. The two-dimensional complex plane is then used in full to express
the independence between two orthogonal components that can be used to reach an alternative
description: the in-phase and quadrature terms (the orthogonal sine and cosine solutions; Footnote
62)91. The latter formulation is sometimes used in radio communication and classical physics and
electronics problems, but is considerably less handy to employ as a substitute for the complex
exponential of the Fourier transform that is de�ned over the complex plane.

In other words, it seems that the extra frequency dimension is perhaps better thought of either
as a single complex dimension or two real dimensions. Both possibilities do not increase the sense
of intuition of the already unintuitive nature of frequency as an extra dimension.

Nevertheless, there may be some justi�cation in opting for a complex frequency dimension. Stan-
dard quantum theory is axiomatically formulated using states and operators that produce real ob-
servables, but are de�ned in the complex rather than the real Hilbert space�something that has
been repeatedly challenged (e.g. Stueckelberg, 1960; Caves et al., 2002; Aleksandrova et al., 2013).
Unlike classical physics, the use of complex numbers in quantum mechanics appears to be more
deeply ingrained in its formalism. Alternative real-number quantum theoretical formulations con-
tain double the number of real Hilbert-space dimensions than for complex Hilbert spaces (of �nite
dimensionality), which generally leads to identical predictions as the standard complex formulation,
with the addition of relatively few constraints to make the two domains match. However, a re-
cent work by Renou et al. (2021) proposed a benchmark Bell-like test and inequality, which involve
three particles in an entanglement swapping experiment (Zukowski et al., 1993) that can distinguish
between real and complex predictions. A subsequent test indeed established that a complex formu-
lation is necessary to predict the results (Chen et al., 2022). While this may not be a result that can
be generalized to all of quantum mechanics, it lends credence to the standard complex formulation.

The paradoxical quantum-state formulation on the complex plane may be readily accounted for if
we accept the frequency to be dimensional and its amplitude complex, which would be then directly
imparted to all quantum states, pre-measurement. This speculative idea would require further
exploration to �nd out if it has any merit.

9.7 P2 = P1 + P3?

All three modes are special and each brings something else to the fore that the other two may not
be good at. Of the three, P2 stands out as the only mode that is deterministic. Incidentally, it is
also the one mode that best corresponds to classical physics and its logic.

91Note that the phase and amplitude are not independent, in general, unlike the in-phase and quadrature components of the
complex signal (Couch II, 2013, pp. 450�454 and 461�463).
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Between time, frequency, and determinism, the latter may be the odd one out, not being a
strictly physical parameter that can be straightforwardly quanti�ed92. It has two opposing facets.
Internally, it represents a judgment of complete knowledge�we must determine whether a system
is truly closed, whether we have characterized it to a su�cient degree, and whether our estimation
of its behavior is precise and unbiased. Without these a�rmations, we cannot deem that what
we know about the system is deterministic. Alternatively, we can decide�by �at�that we are
only concerned with the present degree of determinedness that we can achieve�a certain degree
of precision and complexity that we can muster�and work it analytically from there under the
assumption of determinism. In both cases, we are going to learn something about Reality. In either
case, we are left with the metaphysical question of determinism: Do we know that nothing is ever
going to change our assumptions that had led to the determination of determinism? This is the
age-long problem of induction in a di�erent guise (Hume, 1740, 1748). How do we know that the
physical laws of today are going to be the same physical laws of tomorrow? Or that the probability
distributions are what they seem to be? Or that the universe is �nite and closed? All these heavy
questions may never be answerable. Or maybe they can be answerable for a brief moment of
con�dence, given the state-of-the-art in both data and theory. In a physical landscape in which
every moment appears identical to every other moment, the experience from one brief moment is
readily generalized to others, producing ad-hoc patterns and rules that are only correct as long as
the generalization is warranted.

This somewhat circular set of considerations may lead us to the formation of an epistemological
rule of thumb. As observers, we can only aspire to bring our reality to an ideal P2 Reality, in
which everything is known with certainty at arbitrary precision. But we are forever constrained
by what we know and what we are able to know. And yet, by virtue of acquired knowledge and
memory, whatever we acquire from the various patterns and probabilities we observe in P1, which
are modulated by the present course of events that we track in P3, enables us to approximate
P2 that is composed of these two. The indeterminism of P1 relates to the details and to the
speci�cs of individual records, whereas the indeterminism of P3 lets us determine the proximate
time windows precisely, but is blind to the overall, longer-term trends (�5.3). Whatever is left out
may remain forever underdetermined. The di�erence between our deterministic image of Reality
(i.e., reality) and Reality itself is whatever is left uncharted by P1 and P3 and would variably show
as errors, uncertainty, or more technically, noise. These are anyway inevitable when dealing with
physical quantities represented by real numbers, which can never be known or represented at in�nite
precision, as is required by determinism (Del Santo and Gisin, 2019). Thus, we summarize this
epistemological rule with

P1 + P3 = P2 + noise (82)

9.8 Theorem ontology and epistemology revisited

There is a way to interpret the theorem that was not pursued in the examples, but which may be
valid, albeit unprovable (�5.1). It is possible that while the epistemic usage of the various modes
is correct, Reality is veridically constrained to one mode only. Such a view�or maybe, a belief�
should resort to these strong statements as are implied by the modes all the time�something that
is not entirely unfamiliar in ongoing metaphysical discussions. So, for example, a belief that the
universe is deterministic down to the most minute movement would entail that it is indeed a P2
Reality. Or, beliefs that everything is random, or that it is all about luck, are indicative of P1. Or,
maybe things repeat periodically as in P1, according to one reading of Ecclesiastes 1:9: �The thing
that hath been, it is that which shall be; and that which is done is that which shall be done: and
there is no new thing under the sun.� Or, time does not �ow�it would also be P1�in the words
of Parmenides (Fragment 8; Burnet, 1920): �Nor was it ever, nor will it be; for now it is, all at
once, a continuous one.� This is contrasted with Heracleitean / Platonic �all is motion and �ux 93�
would have us at P3. A �nal and more recent example subscribes to determinism that is backed by
statistics, so indeterminism here is nothing but randomly distributed life variables, forming a bleak
(or, perhaps, sober) combination of both P1 and P2 (Sapolsky, 2023).

In a similar vein, some may be beholden to one of the competing propositions that were logically
rejected in the proof of the theorem (�5). For example, P4 states that both time and frequency

92I am quite certain that there is never going to be a �determinism meter.�
93This famous paraphrase of Heraclitus's doctrine appeared in Plato's dialogs Theaetetus and similarly in Cratylus, although

the closest aphorism remaining from Heraclitus may have be in his Fragment 12: �As they step into the same rivers, di�erent and
(still) di�erent waters �ow upon them.� (Heraclitus, 1991).
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are independent dimensions, but the universe is deterministic nonetheless. So here, some may claim
that it is maybe only our inability to access this very real determinism, but we instead experience
reality as chaos unfolding in di�erent degrees, due to our own limitations as humans.

Another point of departure can be the notion that the universe had a de�nitive starting point,
such as the Big Bang, which was preceded by nothing, so time did not exist before. Therefore, time
must exist, but may not have to end, if the universe will keep on expanding inde�nitely. Time is
dimensional here so P1 can never be true.

To be able to hold on to any one and only one of these beliefs requires that contradictory views
(represented by at least one of the modes or their tendency to switch) should necessarily be void.
Any useful observational data or theoretical advent that is done using these modes has to be a form
of extreme idealization that is only a means to an (epistemological) end.

While these beliefs may have variably played signi�cant parts in philosophy, metaphysics, and
theology, they may not be directly amenable to the kind of logical analysis that has been pursued
here. We can only submit the idea that Reality (or reality) is instead these three modes together,
but not simultaneously. On the metaphysical front, this strange view may receive some currency, by
lending an unexpected solution to at least one persistent metaphysical problem that is associated
with such unimodal worldview as was alluded to in the above paragraph�the so-called foreknowledge
problem that relates to free will. This is developed separately in �B.4.

9.9 Dimensional frequency and physics

The possibility of frequency constituting an extra dimension of Reality may be at odds with several
ideas in modern physics that were not dealt with explicitly in this work.

9.9.1 Ontic frequencies, nonlocality, and relativity

The farthest that the present theory ventured has been to associate the frequency dimension with
quantum nonlocality and to suggest that the frequency dimension can be, quite literally, neither
in space nor in time. We suggested that there should be a meaningful notion of 5D objects that
are de�ned by virtue of dimensional frequency, which can form a connection over the spatial divide
between remote entangled particles that form the object and are characterized by a joint (time-
dependent) spectrum (�8.3.2). While this idea may seem unrealistic and nonphysical on its face, it
can also be seen as a logical consequence of taking the already strange e�ect of action at a distance
and combining it with dimensional frequency�a nonlocal quantity in its own right.

Interestingly, the logic that has led us to associate frequency with quantum nonlocality was
obtained with no direct reliance on quantum theory, but instead on logically contrasting the basic
de�nitions of time, frequency, and determinism that are applicable universally. The same rationale
would therefore lead us to the uncomfortable conclusion that frequency can be nonlocal regardless
of scale. And yet, most of physics appears to strictly act and interact locally. A conservative, albeit
opaque, prescription may be framed in the negative: nonlocality is what is left from Reality after
subtracting all local e�ects.

One di�culty associated with the notion of nonlocality and frequency may be a conceptual
inability to completely separate locality from nonlocality. Presently, the longest nonlocal correlation
that has been reported was over a 248-km distance (Neumann et al., 2022). Does this distance have
a limit? Whether the entanglement information goes through spacetime superluminally or is outside
of it, it may breach the territory of impossibility according to the theory of relativity.

The question of distance is left unanswered also in the cases of the other two nonlocal e�ects
reviewed�e�ects that are not usually grouped together with entanglement�the two-slit experiment
and the Aharonov�Bohm experiment. If, hypothetically, the geometry of these experiments could
be scaled to include distances that are relativistically relevant, would the nonlocality hold? Would
it carry all the way to in�nity? Cosmologically-inspired conjectures combining gravitational and
quantum �eld considerations generally seem to assume that nonlocality can indeed span arbitrary
distances in the local universe (e.g., Maldacena and Susskind, 2013), but without empirical evi-
dence we remain agnostic about it here. In all cases, the relativistic meaninglessness of absolute
spacetime coordinates (�4.1.1) challenges the notion that quantum nonlocality should be associated
with frequency. Our idea was that 5D objects can be de�ned nonlocally, which implies that their
spectral �coordinates� should hold at arbitrary distances. However, this suggests an absolute rather
than relativistic value of frequency (or even a range of frequencies), which does not sit well with
relativity theory. An absolute role of frequency values was highlighted already in �4.2, as making the
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frequency dimension unique compared to spacetime, and giving rise to the speci�c world we live in,
which is not spectrally-invariant in a large number of contexts. It was already inferred earlier that
frequency is unlikely to be the full explanation behind remote entanglement (�8.3.5). This missing
extra component that is needed to identify entangled particles is perhaps also capable of resolving
the inconsistency with relativity that is noted here.

9.9.2 Relationship with other models of extra dimensions

As was mentioned in �2.2, the possibility of extending physics to include additional dimensions to
Reality has been thrown around for more than a century, although previously the focus has been on
spatial dimensions, which are unmeasurable, at least at present. Some of these e�orts were guided
by mathematical issues and inconsistencies in the standard formulation of relativity, quantum, and
classical physics. These aspects make these models fundamentally di�erent from the present take on
dimensional Reality, which was motivated by reasons pertaining to perception and to some puzzling
issues regarding the concept of frequency. This exploration revealed a paradoxical structure of
Reality with a variable number of dimensions according to Theorem 1, which does not compare
straightforwardly with any other higher-dimensional physical theory. The addition of frequency as
a dimension does not directly say anything about the number of spatial dimensions in the universe.
We only used the spatial dimensions as a sca�olding upon which to have wave propagation, and
to be able to meaningfully speak about dispersion�the variation of the wave speed in the medium
as a function of frequency. Dispersion was used in the negation of propositions P5 and P6 in �5,
which means that we made a hidden assumption that the universe contains at the very least one
dimension of space. The inverse should also be true: frequency is a key quantity in all physical
theories regardless of how many extra spatial dimensions they may have, so the present theory may
not threaten their hypothetical validity. That said, the variability in the number of dimensions that
is entailed by the theorem is in itself at odds with all other theories. Still, there may be a tacit
convergence between them in that even higher-dimensional models should ultimately be observed or
perceived as four dimensional, which is P2 in our case�the end point of most measurements and
analyses (see �9.7).

9.9.3 The impending �doom� of spacetime

The present work has taken a diametrically opposite approach to contemporaneous attempts of re-
solving the discrepancy between perception and physics, as well as overcoming inconsistencies within
physics proper (Ho�man, 2024). State-of-the-art theoretical science as is narrated by Ho�man and
colleagues seems to be going in the direction of harnessing ever more sophisticated mathematics,
which tends to be both arcane and abstract. It o�ers the necessary freedom to create what are
deemed as more fundamental mathematical structures, from which spacetime can be derived as a
secondary outcome, whereas concepts such as information, probabilities, entropy, and even evolu-
tionary mechanisms for survival of life are considered primary and primitive.

Rather than abandoning space and time as primitive concepts or structures that are a byproduct
of our perception having to interface with Reality, we treated them (at least space) as a given. We
sought to resolve inconsistencies that had not been previously associated with any major paradoxes
in physics or philosophy, but, at most, only as a footnote in time�frequency analysis research. Not
only did we not introduce any new mathematics, but the mathematics we appealed to in order
to support our argumentation is relatively basic and maybe even disappointingly so, in light of
the promising possibilities opened up by modern mathematical and theoretical physics. Instead,
we relied on the logical consistency of conditions and contexts in which the quantities are used.
We also sought to bring together practices from di�erent �elds and connect the dots of evolving
science over four centuries, which have not been properly united previously. Critically, we also
treated sensation and perception as epistemologically instrumental for the understanding of the
physical world�something that also de�es the current trend in research, which tends to highlight
the illusory, imperfect, distorted, cognitive, and heavily processed nature of perceived information in
all modalities, which is otherwise inferior to instrumental and scienti�cally grounded epistemology.

One way to interpret the discord between the present and Ho�man's approaches is that the
present theory of frequency is nothing but a reframing of subjective reality that may match objective
Reality more universally than is entailed by the classical de�nitions. Here, our approach is still
classical at heart and, at best, improves on the current inconsistencies between perception and
physics, but ultimately fails to provide a route for resolving more pressing issues in the science.
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Metaphysically, this interpretation can imply that perception is fundamentally hopeless: it is a tool
that is subservient to the biology and any resemblance between it and the external Reality is either
accidental or utilitarian, but not principal. It would be thusly understandable should the present
work, which makes what may seem as extraordinary claims about well-trodden concepts in the
science, may even come across as an anachronistic step back from where the state of the art lies.

An alternative way to interpret the present work is to see it as providing reinforcement of several
otherwise shaky connections between reality and Reality. These may have been previously neglected
because of a presumed historical split in the sciences (�2.3), focus on other issues, or prevalent beliefs
about the limited capacity of human perception to tap into Reality, most poignantly expressed by
Kant (see Footnote 1). This interpretation hints that science can do better to bridge the seemingly
insurmountable gap between the inner and the outer�the subjective and the objective�and provide
a more comprehensive outlook on how the two relate to one another, before resorting to the total
abandonment of space and time. Taken to the extreme, this perspective may even suggest that
where reality and Reality meet they have to be one, somehow�as a sort of a condition on their
continuity being of the same world. In contrast, the prevalent situation in most sciences is that
the two are disjoint and the subjective is arti�cially and arbitrarily introduced along the way, by
the experimenter, analyst, engineer, or theoretician�all depending on context, so it tends to hide
behind di�erent guises: observation, agency, decision, choice, volition, criterion, goal, threshold,
preference, program, etc. Arguably, this has been a very useful relic of Cartesian dualism that
has the mechanics of life completely detached from its nonphysical component�be it consciousness,
mind, thought, spirit, or soul (Descartes, 1637 / 2004). The separation of the physical and the
nonphysical is spectacularly e�ective far away from the points of interface. But, at the physical�
nonphysical interface it either stops working or gives rise to paradoxes of di�erent kind, which are
all the more accentuated in the realm of psychophysics. Whether the addition of frequency and
the elusive dimensional nature of both time and frequency implied by Theorem 1�what spells out
an odd bridge between the internal reality and external Reality�can do something to alleviate the
sense of doom that has been noted of late, remains to be seen.

9.10 The three modes of reality and the two brain hemispheres

During the analysis of all of the examples in �6��8, we encountered what may be taken to be key
points that require agency. They manifest either in the choice of analysis, which can be considered
epistemically necessary, or they are implicit to the process that is needed to achieve a particular task,
not necessarily by way of explicit analysis. In both versions, it may naturally pivot the discussion
to the role of the brain in producing perspectives on Reality. It was additionally suggested that
consciousness has to be involved in the creation of boundaries, which has meaning only when there
is something or somebody to draw or detect them, since they are rarely, if ever, self-evident (�9.5).
Although it is�to many�a very unsatisfactory interpretation of the quantummeasurement problem,
it is not clear how it is possible to altogether remove consciousness that sets up a measurement,
observes it, and analyzes it, no matter how much removed it is from a long chain of such events.
Putting all this aside, though, we provided what seems like a completely unrelated example from
psycholinguistics, wherein we identi�ed similar patterns that are hypothesized as models for intricate,
routine tasks of the brain�the disambiguation of word meanings in running speech (� 6.4). The
meaning disambiguation models can be thought of as an epistemic re�ection of the brain processes,
or re�ecting the epistemology of the scientists that originally formed these models. In any case,
at least in that one example, it was possible to identify a pattern that is inherent to our thought
process�whether conscious or unconscious (automatic)�that converges with the modes of Reality
as are spelled by Theorem 1. In fact, a theory by McGilchrist (2009) that accounts for the grossly
di�erent roles of the two brain hemispheres seems to be concordant with a rough classi�cation into
two of the three Reality modes that we �nd in all of our examples.

McGilchrist (2009) attempted to provide a reasoning for why the brain needs two hemispheres
that are nearly identical anatomically and physiologically, given that the functional lateralization
(i.e., more prominent brain action either in the left or right hemispheres) has been a long-time
unsolved puzzle. Using countless examples from neurology, neuroscience, psychiatry, psychology,
linguistics (and subsequently also from the arts, philosophy, sociology, and history), McGilchrist
makes the case that, roughly, the left hemisphere is responsible for generalization, pattern �nding,
rule formation, habit formation, and abstraction�all the things that require sustained observation
over long time until a nearly automatic, impersonal, time-less behavior can be formed and applied.
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In contradistinction, the right hemisphere reacts more to the present, to things (sensory data) as
they are in their own context, without necessarily naming or classifying them. The right hemisphere
does not engage in abstraction, so it is more attuned to novelty and to the uniqueness of the moment.
The two hemispheres may react to the same Reality, but produce markedly di�erent image of it,
which in acute and pathological cases of hemispheric dysfunction can be de�cient. The reality as we
grasp it is produced by a form of back-and-forth process between the two hemispheres, which may
easily go out of balance if one is more dominant than the other.

With relatively little e�ort, it can be seen that the left-hemispheric perspective can be mapped to
our P1 mode�time-less, probabilistically driven, and self-contained�whereas the right-hemispheric
perspective corresponds to our P3 mode�it is present in real-time, reacts to incoming inputs as they
come along and is, ideally, less bound to rules (say, to probabilistic averages). The amalgamation
of P1 and P3 creates reality as we know it: a P2 reality, which once it takes place is deterministic,
albeit noisy, because of the incompleteness and imperfection involved in the information gathering
through P1 and P3 (see �9.7).

While it may appear as overly associative and far-fetched, the fundamentally dissimilar starting
points and reasoning processes in which the present and McGilchrist's theories have reached similar
conceptualizations of reality may serve to cross-validate both. Interestingly, in one of his concluding
remarks McGilchrist (2009, p. 460) suggested a deeper connection, in a similar spirit to this work:
�I believe our brains not only dictate the shape of our experience we have of the world, but are likely
themselves to re�ect, in their structure and functioning, the nature of the universe in which they
have come about.�

We should qualify the above by noting that with regards to the example of word disambiguation
(�6.4), most literature indicates that the semantic processing involved in it takes place in Broca's
area of the left hemisphere (Rodd, 2018)�a general area for much of language processing (Turker
et al., 2023). Processing ambiguity in the right hemisphere (in an analog area of Broca's area) has
not been explored nearly as much, although it is known to have some involvement in that process.
In recent tests of orthographic ambiguity, some sequential back and forth between the hemispheres
was documented (Mizrachi et al., 2024; see also, Drijvers et al., 2025), but its relevance to spoken
ambiguity and its speci�c processing may be too complex to readily map to any of the modes as
were suggest in �6.4.

9.11 Mode transition

Theorem 1 prescribes that the modes cannot be simultaneously true, but allows them to switch by
temporally following one another, as long as we entertain the possibility of observer and observed
systems, in which the observer can modify the boundaries of the observed. In this way we could
map the three modes to diverse situations that culminated in the claim that there should generally
be a discontinuity between modes with an unknown e�ect. We explored two examples of this
within quantum mechanics, which may be considered to be highly speculative. Even if taken as
essentially correct, the dichotomous and instantaneous nature of the transition may be rejected as
grossly unsatisfying, because it does not explain what the actual process is that physically happens
whenever modes switch. If the boundaries are only a creation of our consciousness, then why should
we ever measure any physical manifestation of it? Then, surely, the physics and its Reality should
be the same in all cases, and the framing of the theorem only endows them with an uninformative
and unnecessary veil of mystery.

I admit that I do not have a good counterargument for this potential criticism and would be
happy to see it being picked up by someone with a fresh perspective on this matter. All I can do is
submit the following, more philosophical take on the matter.

In some situations, it may seem that all three modes are equally correct, and it is only a matter
of momentary convenience and ability to use whatever knowledge we have, or choice of perspective
that should result in the preference of one over the other. Yet in other situations, it appears that we
are truly constrained in our ability to acquire information about the system, which renders all the
modes idealized. It is not impossible that we are �held captive� by the concepts of time, frequency,
and determinism, which inherently and necessarily embody this contradictory Reality. Replacing
these three with some other concepts may allow us to escape their grasp and obtain an image of
Reality that is smoother. Escaping determinism, for example, has been particularly notorious in the
sciences, as it has never been easy to generate true randomness (rather, pseudo-randomness) that is
fully indeterministic (Yu et al., 2019), but it has also been di�cult to produce and de�ne systems
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that are neither deterministic nor indeterministic�Popper's �cloudy clouds� (Popper, 1965 / 1994).
Some of this discussion seems to go parallel with the problem of de�ning true complexity, which

occupies the large space between deterministic and stochastic systems�both of which are relatively
simple to model, in comparison with complex systems (dubbed �problems of simplicity� and �prob-
lems of disorganized complexity�, respectively, by Weaver, 1948). We did not explore the mode
transitions that may be found on the edge of determinism, just when deterministic systems turn
chaotic and produce what would otherwise appear random. This dynamics is a gateway to vari-
ous e�ects in complex systems that are characteristically unintuitive. With the exception of brie�y
mentioning synchronization, we did not touch this vast �eld here, which is left for future work.

Still, the question remains whether these three concepts are only fundamental to us as living
humans with a particular neural wiring that makes our body, senses, perception, and cognition,
or they describe something deeper about Reality, us, and our interrelation that cuts through our
corporeal limitations.

10 Conclusion

This work has attempted to connect a few dots that trace the narrative of frequency as a concept, a
physical quantity, a percept, and most speculatively, a dimension of Reality. It resulted in a theorem
that ties together time, frequency, and determinism in an unintuitive manner that includes three
mutually exclusive modes of Reality, one of which has frequency as a dimension that is on equal
footing with time. As a dimension, it was demonstrated to serve an epistemological role, which
may extend to an ontology as well, given the inherently nonlocal de�nition of frequency. The two
other alternative modes encapsulated in the theorem�that time is not a fundamental dimension
or that the universe is wholly deterministic�are no less mind bending, whether they are taken as
�nal statements, or as allowing for switching between the modes, as was explored here using a broad
gamut of examples.

It is not unlikely that the preceding argumentation will leave incredulous the few committed
readers, who have made it thus far in the reading, be they from the physics, engineering, philosophy,
applied mathematics, signal processing, neuroscience, or any other community. Nevertheless, it is
my hope that the logical reasoning in the above has been robust enough to provoke a discussion and
further exploration of the possible implications of at least a subset of the ideas and issues raised.
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friendship, generosity with ideas, and openness in discussions regarding my work�often in ways
they did not themselves realize. But as with so many other things, I do not know where to put the
boundary between those who should be acknowledged and those who should not. People go in and
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A Determinism

A.1 The Fourier integral as a proxy for determinism

Throughout the text, the notion of determinism routinely creeps into the discussion about frequency.
As this work reveals, determinism is essential for the understanding of the relationship between fre-
quency, time, and Reality. Therefore, we aim to have an operational de�nition of determinism that
can be used in all the di�erent contexts touched upon here. We shall thus refer to the canonical
de�nition of determinism that was given by Pierre Simon Laplace: �Given for one instant an intelli-
gence which could comprehend all the forces by which nature is animated and the respective situation
of the beings who compose it�an intelligence su�ciently vast to submit these data to analysis�it
would embrace in the same formula the movements of the greatest bodies of the universe and those
of the lightest atom; for it, nothing would be uncertain and the future, as the past, would be present
to its eyes�94,95 (Laplace, 1814a, p. 4). While Laplace's de�nition has been criticized on several
grounds (Earman, 1986), its operationalizable logic consistently coincides with the signal-analytic
practice and theory that are at the heart of this work.

The main motivation for invoking determinism in this work is the near universal application of
the Fourier transform (and other similar transforms) in the analysis of physical systems, waves, and

94The original French text is: �Une intelligence qui pour un instant donné, connaitrait toutes les forces dont la nature est
animée, et la situation respective des êtres qui la composent, si d'ailleurs elle ètait assez vaste pour soumettre ces données à
l'analyse, embrasserait dans la même formule les mouvemens des plus grands corps de l'univers et ceux du plus léger atome: rien
ne serait incertain pour elle, et l'avenir comme le passé, serait présent à ses yeux.� (Laplace, 1814b, p. II).

95Laplace crystallized earlier ideas of Leibniz about causality and prophetic intelligence (Weinert, 2016, p. 65�72).
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signals�both in theory and in experiment. As long as the Fourier integral mathematically exists,
perfect knowledge at one point in space of the Fourier spectrum�a time-independent function of
frequency�is equivalent to perfect knowledge of its reciprocal time function over the entire time
domain. Applying Laplace's de�nition, perfect knowledge of the time signal satis�es the requirement
for determinism, as it contains all the information about the past and the future of the function,
which e�ectively describes some local physics. Thus, without necessarily having to account for
the various causes that generate a given arbitrary spectrum, the Fourier integral endows us with
a powerful method to directly evaluate whether we can refer to a particular physical outcome as
deterministic, i.e., that it appears with probability equal to one (see Footnote 12). Even if perfect
knowledge of any spectrum only exists strictly theoretically (say, of a closed classical mechanical
system), it is nevertheless sensible to elucidate what conditions are necessary to have this knowledge
exist, if only hypothetically. Contradiction of these conditions may therefore lead us to conclude
that the system is indeterministic. This is explored in the analysis mainly in �3.4.3, �3.5.1, and
throughout the remainder of the main text.

To my best knowledge, the time-independent spectrum and, speci�cally, the availability of the
Fourier integral have not been previously highlighted as bearers of determinism within the exten-
sive literature on the topic in philosophy of science. Invoking this idea in the context of classical
determinism seems to be warranted for the following four reasons:

1. The Fourier integral (and its inverse; Eqs. 40 and 41) can be thought of as a mathematical
identity, which means that nothing in time should be able to escape its purview�but only as
long as the time-independent spectrum can be determined with certainty.

2. It is a tool that can be directly used to solve a large class of (linear) partial di�erential equations,
which may in turn have classically been the primary analytical tool that had planted the idea
in the �rst place that determinism through physics is possible (van Strien, 2021).

3. Any physical measurement that is carried over time can be associated with a time series or a
continuous signal, which, ideally, can be subjected to Fourier analysis (perhaps through more
general signal processing) and is agnostic to linearity and other properties that may or may
not characterize the physical system that generated it.

4. In practice, the Fourier transform appears ubiquitously in the analysis of both deterministic

and indeterministic physical systems and processes.

In summary, we maintain that perfect knowledge of the Fourier spectrum�whether
attainable in theory or in practice�is tantamount to making a claim of determinism.

A.2 The uncomfortable union between the Fourier series and the

Fourier transform

Fourier analysis is primarily applied in two large classes of problems that are solved using either the
Fourier series or the Fourier transform. The series is used in physical problems that are bounded and,
hence, periodic in the conservative sense�without a decaying amplitude, so that the oscillations are
sustained inde�nitely (see comment in �3.2). The series, as the name implies, results in coe�cients
of a discrete series of frequencies, but is not necessarily suggestive of a claim on mapping the entire
time domain as the Fourier transform does (� 3.4.1 and � 3.4.3). The same systems can also be
analyzed using the Fourier transform, wherein their boundedness (either in space or in time) would
have to be represented by a matching �nite-support rectangular window (�3.5.6), whose own e�ect
enters the continuous spectrum through convolution. However, not only does it result in a more
cumbersome solution, but it may also not be essential for the understanding of the physics of the
problem. Hence, in the limit of very long oscillation duration relative to the period, the transient
e�ects associated with the �niteness of the window can be safely neglected, so the Fourier series
provides a better grasp of the physics of the system (Fig. 10).

Some systems exhibit physical behavior that combines what appears as both discrete and con-
tinuous spectra, so the analysis reverts to Fourier transform�the more general of the two analyses.
Frequencies are then represented using the Dirac delta function that is more accurately considered
a generalized function (such as a distribution or a measure), whose entire support is concentrated in
an in�nitesimally narrow bandwidth, reduced to the size of a point (Dirac, 1967, pp. 58�61). The
delta function is de�ned as

δ(ω) =

{
∞, ω = 0

0, ω ̸= 0
(83)
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and through its integral ∫ ∞

−∞
δ(ω)dω = 1 (84)

The most useful property of the delta function is in integration, when it appears in a product with
another function g(ω) ∫ ∞

−∞
g(ω)δ(ω)dω = g(0) (85)

Therefore, the inverse Fourier transform of a discrete spectrum X(ω) =
∑

n cnδ(ω−ωn) that consists
of delta functions is

x(t) =

∫ ∞

−∞
eiωt

∑
n

cnδ(ω − ωn)dω =
∑
n

cne
iωnt (86)

which is the same pure sine series as in the (harmonic) Fourier series (Eq. 36). With this, the
series and the transform may be united, both mathematically and conceptually�something that is
commonly done in many �elds. However, as is usually emphasized in introductions to the topic,
the condition for absolute integrability�and thus for the Fourier transform to exist�is not satis�ed
with the delta function (e.g., Wiener, 1930; Middleton, 1996 / 1960; Goodman, 2017). To make it
mathematically sound, the Fourier integral is replaced with a more general integral (the Riemann�
Stieltjes, Lebesque, or Lebesque�Stieltjes integrals) that can absorb the discontinuity in the delta
function, which normally addresses the problem.

It is worth emphasizing the unrealistic nature of the delta function, which mirrors the trouble
with applying the standard (Riemann) integration, using a quote from the seminal work by Blackman
and Tukey (1958, p. 256): �Functions of time, such as cosω0t, which represent an in�nitely long
past and future history of activity, are not a bit more realistic in a physical sense than are `in�nitely
sharp' lines in the frequency spectrum. Similarly, functions of frequency, such as exp(−iωt0), whose
absolute values do not vanish as f → ∞, are not a bit more realistic than impulsive `functions' of
time.�

Mathematical rigor aside, the inclusion of discrete frequency points within the Fourier spectrum
is suspect when we scrutinize its existence as a proxy for determinism, as was argued in �A.1. In �3,
it was also additionally argued that perpetually oscillating systems are an idealization in classical
physics for two reasons. First, because classical systems contain at least an in�nitesimal damping
component that will eventually cause the amplitude to decay. More critically, they are idealized
because an oscillation has to have had a beginning, which provided it with the energy for oscillating
in the �rst place (Fig. 22). Therefore, strictly speaking, analyzing these systems without considering
a starting point ignores their true cause�some external force�which leads to the elimination of the
transient components and the associated spectral artifacts that would be associated with its �nite
duration. Nevertheless, both discrete and combined discrete�continuous deterministic systems have
been traditionally considered in physics to be fully deterministic (see Footnote 12). And indeed,
given initial conditions (amplitude and phase of the oscillation), we can accurately predict the
motion of such systems (e.g., a simple harmonic oscillator) at any point in time. However, the more
idealization that has gone into the modeling of this oscillation (i.e., the more damping there is in
the oscillation that was neglected, or the shorter is its total duration compared to the fundamental
period), the larger the error of the prediction will be in the remote past and future when compared
to Reality. Therefore, we reach a contradiction: we have systems that are deemed deterministic by
virtue of their deterministic mathematical idealization, but are physically unrealizable. This makes
this particular form of determinism�the one associated with pure oscillations�untenable. Driving
this point further, given that true discrete oscillations never die out and have neither beginning nor
end (�3.4.1), they extend to the in�nite past and future, which implies that the extent of time�
perhaps, corresponding to the age of the universe�is in�nite. Reversing the order of inference, we
can �nally ask: Can a universe with an in�nite extent of time ever be considered truly deterministic?

This issue may come across as de�nitional nitpicking, but we encounter it in full force in quantum
mechanics, where the majority of systems are quantized in one way or another, and therefore admit
discrete frequencies96. This is one hallmark feature that distinguishes the quantum from the classical,

96Moreover, the general solution of the time-independent Schrödinger equation is a series of stationary eigenstates whose energy
levels (and hence frequencies in corresponding emission or absorption of photons upon level transition) have zero variance around
the mean (Gri�ths and Schroeter, 2018, pp. 27�28). Given the validity of the Schrödinger equation, the only way for the variance
to be non-zero is if the potential is at least minimally time-dependent, so that the separation of variables that is necessary to obtain
the harmonic time dependence can only be taken as an approximation.
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Figure 22: Two sources of in�nitesimal broadening due to the �niteness of the signal duration and
damping. Left: The Fourier transform of a cosine at frequency f0 Hz with �nite duration D (rect-
angular window) x(t) = rect(t/D) cos(ω0t) is displayed for �ve di�erent values (shortest on top; the
symmetrical negative spectrum is not displayed). In line with the uncertainty principle (Eq. 45),
the longer the duration of the signal or wave is, the narrower it becomes and the closer the cor-
responding sinc function gets to the Dirac delta function�the Fourier transform of a cosine in the
limit of in�nite duration: X(ω) ∼ sinc [(ω − ω0)D] + sinc [(ω + ω0)D] (omitting the constant 1/2πD
factor). Right: The e�ect on the spectrum of a minute damping constant r for signals begin-
ning at t = 0 of the form x(t) = e−rt cos(ω0t)u(t). The corresponding spectrum of this signal is
X(ω) ∼ [r + i(ω − ω0)]

−1 + [r + i(ω + ω0)]
−1. More heavily damped signals are on the top and lightly

damped signals are on the bottom. In both cases, the broadening e�ect for long / lightly-damped sig-
nals is negligible for most applications imaginable and may also be downright unmeasurable in practice.
Nevertheless, it is neither mathematically nor physically zero, which is invoked here to argue for the idea
that frequency is continuous and should not be taken as discrete in deterministic systems. Note that the
broadening depends on the absolute values of the duration / damping and is independent of f0. The
absolute value of the Fourier transform is displayed in logarithmic, additive units, so each 10 dB drop in
the magnitude is equivalent to 10 times the drop in power, emphasizing the di�erence in power between
the peak and its �anks.

where it is understood that if a classical system appears discretized, it is only a coarse-grained
idealization. Thus, we reach two additional contradictions with the reasoning above. First, we
have quantum systems with �xed energy levels that have corresponding constant frequencies in the
parametric sense, even though their lifetime is �nite. This would violate the rules of basic signal
processing and, speci�cally, the windowing property that should universally apply to all truncated
Fourier transforms, and broaden all frequencies, even in�nitesimally (�3.5.6 and Figs. 14 and 22,
right). Second, such pure-state solutions are routinely considered to be deterministic, as is the
Schrödinger equation itself (see �7.2). Whenever similar equations appear in classical mechanics, we
know that they are an idealization that results in de-facto (ever so slight) indeterminism�even the
most precise macroscopic oscillator will exhibit some transience. But if indeed in quantum systems
the discrete spectra faithfully represent the physical Reality of being a truly isolated system and is
not merely an idealization, then we may have at least one physical system type in existence that is
both deterministic and has an in�nite time extent, barring any particle decay, or another process
that renders the solutions to be of �nite duration. In the framework of Theorem 1, this situation
corresponds to proposition P7 (deterministic Reality with parametric frequency and parametric
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time), which was ruled out due to contradiction that was shown in �5 (P7), and was also ruled out for
classical systems in particular in the previous paragraph. However, we may resolve this paradoxical
condition, if we instead use our knowledge that the quantum state is, in fact, indeterministic for
other reasons (e.g., superposition eigenstate, the impossibility to measure the absolute phase of the
pure state). Such a solution would constrain the system to P1, while retaining the negation of P7.

Whether pure quantum states in Reality truly admit delta-function-like in�nitesimally-narrowband
spectra remains an open question in this work. However, due to the measurement problem (�7) and
the impossibility to directly measure the amplitude and phase of the quantum wave function, coming
up with a method to precisely observe the state without perturbing the closed quantum system and
its spectrum may be impossible (�7.5), leaving the question purely theoretical. That said, we may
be inspired by the related controversy of the existence of quantum jumps between discrete energy
levels, whose instantaneous nature bothered Schrödinger (1952a,b). In a recent experiment, quantum
trajectory theory was employed to reconstruct the Hilbert space time dynamics of quantum jumps
at a resolution of 100 ns, where it was found that they are indeed not instantaneous, although the
jumps appear instantaneous if the time resolution of the measurement is made coarser (Minev et al.,
2019). While the jumps were triggered spontaneously, their dynamics followed a deterministic path
between the initial and �nal states. Although these measurements did not include or imply a corre-
sponding time�frequency trajectory that can conclusively show evidence for transience in otherwise
perfectly constant energy states, it seems reasonable that such a measurement would indeed reveal
transient components.

Another case study that challenges the negation of P7 is the atomic (and the related optical)
clock�a meticulously engineered quantum electronic instrument, whose precision almost de�es imag-
ination97. The universal reference for the atomic clock and for standardized time measurements is
a speci�c hyper�ne quantum transition of the unpaired electron in the outer shell of the caesium
atoms that leads to the release of a photon, corresponding to the energy di�erence between the
hyper�ne levels (F = 4, M = 0 to F = 3, M = 0) of the ground state 2S1/2 and is de�ned to be
|E2 − E1|/h = 9, 192, 631, 770 Hz (BIPM, 2024). The entire design of the atomic clock is geared to
isolate (i.e., to physically �lter) photons emitted at that exact frequency, minimizing or correcting
for various biasing and spectral broadening e�ects such as the Doppler, Zeeman, and blackbody
radiation e�ects (Audoin and Guinot, 2001, pp. 109�235). The clock is built so that it has a res-
onance at 9.192... GHz at which the corresponding transition probability of a beam of caesium
atoms is maximized. A crystal oscillator excites the atoms to the particular state de�ned above
using microwave radiation. A special detector is tuned to detect ions at that state, whose output is
converted to electric current that is proportional to the number of particles detected. Any deviation
from resonance causes a drop in this number, and thus a drop in probability of particles detected,
which generates an error signal�an error that is proportional to a deviation in frequency�that is
used to correct the electronic oscillator by virtue of a feedback loop with gain, �lter, and a mixer
(similar to the PLL circuit mentioned in �3.5.9). Therefore, this highly intricate instrument produces
a dimensional, deterministic time output (P2) from a parametric, probabilistic quantum e�ect (P1),
within which the transition frequency is exact. In order to get a stable output, though, the clock
must harness a real-time P3 tracking mechanism, where frequency is time-dependent, and hence
dimensional. Therefore, here too, the quantum e�ect in use is indeterministic�to us, the observers,
it is still expressed as a probability and is therefore P1 and not P7.

For the purpose of this work, we assume that P7 does not exist in Reality, so that Theorem 1
remains valid with only three mutually exclusive modes of Reality and not four.

B Metaphysics

The following is an addendum to the main text, where the notions of God and Consciousness are
treated head-on, using the framework of Theorem 1 and the analysis of determinism in �A.

B.1 Laplace's �demon�, time, and precision

Having elucidated the relationship between determinism and time in �A.2, we can revisit Laplace's
de�nition of determinism. We reached the conclusion that determinism with respect to particular

97At the time of writing, a new optical clock boasts a fantastic uncertainty of 2.5 · 10−18 (Hausser et al., 2025)�the equivalent
of about one second over the current estimate of the age of the universe of 13.8 · 109 years. This is ten orders of a magnitudes
better than the very �rst atomic clock that had a reported uncertainty of 100 µs per day (Essen and Parry, 1955).
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systems, waves, or signals�anything that can be subjected to Fourier analysis�requires �nite time
to be considered truly deterministic. Although we argued that the combination of in�nite time and
deterministic systems does not exist, we left the question open of whether such systems can truly
exist in the quantum domain, as standard quantum theory implicitly predicts. In the following, let
us indeed entertain the notion that for all systems in the universe, determinism requires �nite time.

Laplace invoked an �intelligence su�ciently vast� that can analyze an arbitrarily large amount
of data and obtain a perfect (i.e., zero-uncertainty) prediction and retrodiction on every physical
scale of the universe. In the scienti�c folklore, the vast intelligence was renamed �Laplace's demon�
(the term appeared in print at the latest in Margenau, 1931)�the �rst demon in a respectable
tradition in the scienti�c gendankenexperiment literature (Weinert, 2016). Though, depending on
the size of the system that is being analyzed for which a prediction is produced, referring to the vast
intelligence as a demon is unnecessarily conjuring negative connotations, in addition to misestimating
the required intelligence for the task. On a small-scale system, perhaps a very clever human scientist,
well-equipped with the best of theories and measurement facilities, can do just as well. On a larger
scale, perhaps it is future arti�cial intelligence (AI) that would be able to process the amount of
data according to all known scienti�c laws that humanity has fed it with, and more. On the scale
of the entire universe, the vast intelligence, by its very de�nition, can only be thought of as God.
A demon or any other supernatural entity, would perhaps be better placed somewhere in between
these categories. However, instead of insisting on its most appropriate name, let us rather assume
that the entity possesses intelligence that is so much greater than the intelligence of one individual
that it can be treated as in�nite. We shall notate it with intelligence∞.

Similarly, the perfectly certain knowledge of past and future that the intelligence commands�the
very essence of determinism�can be reformulated as perfect precision with respect to any physical
quantity in the universe (cf., Popper, 1965 / 1994; Del Santo and Gisin, 2019). Let us, once again,
treat it as an in�nite quantity, and notate it with precision∞.

Therefore, we seem to arrive at a relation that underlies determinism comprising in�nite intelli-
gence, in�nite precision, and �nite time. Contrasting it with Theorem 1, this abstract relation can
be immediately mapped to P2, which is the only mode of Reality that is both deterministic and has
dimensional time. By symmetry, we can change the �niteness / in�niteness of the three abstract
quantities�time, precision, and intelligence, and try to map them to the other two modes of Reality
of the theorem. So, if we retain the in�nite intelligence, assume in�nite time, while making the
precision �nite, it naturally �ts to P1, which is characterized by a probabilistic approach that nec-
essarily gnaws on precision, in contradistinction to P2. In�nite time (or rather, in�nite periodicity
in P1), though, should cause the system to become indeterministic, as was argued in �A.2. The
last combination would then have �nite intelligence, in�nite time, and in�nite precision and can
only be mapped to P3. The idea of �nite intelligence is strange, but since this is a localized mode,
centered around the present time window, which typically describes synchronized physics that can
be made arbitrarily precise, there is some sense in it: whatever intelligence there is, it applies only
to a narrow present window and cannot handle the entire past and future, so it cannot (or need not)
be in�nite�certainty not at the degree that is required by an in�nite time domain.

Thus, we can summarize these three combinations of two in�nite and one �nite �quantities� as
generators of the three modes of Reality we identi�ed. We shall blatantly abuse the mathematical
notation of the dot product operation to convey the point, remembering that (in proper mathematics)
a �nite quantity times an in�nite quantity is in�nite. Using the product form, we can reformulate
the three modes of Theorem 1 with the following mutually exclusive prepositions:

P1. precision · intelligence∞ = time∞(≡ periodicity∞)

P2. time · precision∞ = intelligence∞

P3. intelligence · time∞ = precision∞

where the ∞ subscript indicates an in�nite quantity, property, resource, dimension, etc., whereas the
absence of subscript indicates a �nitude. Intuitively, these strange �equations� can be understood
as constraining the number of in�nities to two out of three in every given mode. The reasoning for
this may be that there must be something �nite in the realistic experience, which is nevertheless
produced by in�nities. Therefore, a corollary of this reformulation of Theorem 1 is that Reality
cannot be produced with all simultaneous in�nite time, precision, and intelligence.

We note that this reformulation of the theorem may clue us into the idea that an in�nitely precise
spectrum in P2 is equivalent to in�nite intelligence: it contains all the information needed about the
closed universe.
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B.2 Time and intelligence

Amplifying Laplace's rather vague cues in his description of a know-all non-demonic demon, we
arrived in �B.1 at a peculiar pseudo-mathematical formulation of Theorem 1, which contains various
instantiations of intelligence, time, and precision. In this subsection we further this exploration by
making the substitution of in�nite intelligence with God. For this, we invoke one of the many at-
tributes of God as being characterized by omniscience�presumably a precondition for determinism
to be even hypothetically plausible. In this, we obtain three di�erent relations between God and
time, which are de�ned by the third�that is, by precision.

Starting again from P2, we have an �equality� between God and the �product� of time and in�nite
precision. Therefore, we can reduce it to the assertion that in P2 God is, literally, the Product of
time98. This relation is inverted in P1, where God produces in�nite time, using �nite precision. We
can therefore translate it to God as the Creator of time, or rather, periodicity. Finally, in P3 we
only have a �nite intelligence of God�perhaps not a full manifestation of His omniscience, although
di�erent interpretations to this statement likely exist. Now in�nite precision is the product of this
�nite intelligence and in�nite time�a switch of roles from P1. Thus, we may translate it to God
being the Subject of time in P3. In summary,

P1. God the Creator of Time.

P2. God the Product of Time.

P3. God the Subject of Time.

These three markedly di�erent relationships between God and Time prescribe fundamentally di�er-
ent experiences of reality. It may be that the very de�nition of God is the impossible union between
the three, which are otherwise mutually exclusive. This de�nition is both paradoxical and, arguably,
self-contained, which underscores the impossibility for us to conceive the meaning of God: here
God is both the cause and the e�ect of Time, which is both the cause and the e�ect of God. This
paradoxical statement is reminiscent of Spinoza's causa sui God that is both the cause of everything
and a cause of itself. According to his Proposition 16, Corollary 1: �Hence it follows that God is
the e�cient cause of all things which can fall under the in�nite intellect� (Spinoza, 1677 / 2001),
where we can have time as one such thing�mapped well to P1. Then, according to Proposition 16,
Corollary 2: �It follows, secondly, that God is cause through Himself, and not through that which
is contingent (per accidens).� This may be mapped to P2 (or to the totality of P1, P2, and P3).
Preposition 17, Corollary 3 �nally states: �Hence it follows, �rstly, that there is no cause, either ex-
ternal to God or Within Him, which can excite Him to act except the perfection of His own nature.�
Perhaps a stretch, but it may be mapped to P3, thus mirroring the self-re�exive logic of the above
formulation.

B.3 Consciousness

Now, instead of focusing on the vast intelligence, we can invert the perspective of P2, by appealing
to the measurement problem of quantum mechanics (�7). One of the most controversial and least
palatable interpretations of this problem entails that the wave function collapse is caused by the very
act of observation by a conscious being (von Neumann, 1932 / 2018; London and Bauer, 1939 / 1983;
Wigner, 1961 / 1983). Penrose (2019), in another provocative hypothesis, inverted this logic and
proposed that consciousness is caused by the collapse, instead of the other way round. We argued
that the measurement problem may be an inevitability, in line with Bassi and Ghirardi (2000). But
we also argued that consciousness is required to make sense and de�ne boundaries (� 9.5). The
solution of physical problems is in large part about de�ning the boundaries of the system that is
being modeled, and thereby de�ning its relation with an �outside� world. While it seems that many
boundaries exist in Reality and are easily de�ned, when it comes to the �ne details of considering
something to be part of the system, it usually comes down to a decision. Sometimes, the decision
is straightforward. For example, a polished crystal lying on the ground is easily separable from
the soil and the atmosphere surrounding it. But, a porous object (like a sponge) combines mixed
media of air trapped within solid, which de�es a simple boundary drawing. When inspecting living
systems, the decision is even more complex. Is the volume of air that is enclosed in our nostrils part
of our body? Or the air between our hairs? Are the gut microbes we carry part of us? The same

98We ambivalently use the English word �product� in two senses here: the result of mathematical �multiplication� and the
outcome of production through work and thought.
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goes even for ethereal objects such as words. Written words are easy to distinguish because of the
space between them (in some languages), but in running speech, their acoustic boundaries�should
they at all exist�blend in a complex neurophysiological process responsible for speech production
(Danilo� and Hammarberg, 1973; Kühnert and Nolan, 1997). Examples are as abundant as there
are de�nable things, regardless of domain. The things themselves�certainly the inanimate objects
among them�do not need to draw any boundaries, but rather, boundaries emerge when we observe
them, maybe through cognitive processes, heuristics, neural signal processing schemes, or other
perfectly justi�able evolutionary rationales.

We argue, therefore, that consciousness is mandatory for making boundaries�there is no sense in
boundaries if there is nobody there to distinguish between what is being included or excluded. And
so, we fuse the ideas of von Neumann, London, Bauer, and Wigner and have it that consciousness
is indeed essential for the quantum measurement, because consciousness is required for the act of
observation in general. As was analyzed in �7.3, the post-measurement state of the quantum system
is in P2, where it is moved to the classical domain. We thus reformulate P2 with: Consciousness as
observation. This �ts a deterministic universe worldview, in which the conscious agents that we are
appear to have no control over our life, so we can, at best, observe our own life unfold.

It was argued throughout this work that Reality, as experienced by perceiving animals such as
ourselves, is tri-modal. Therefore, we would like to elucidate the role that consciousness, as the
boundary shifting process we possess, has in both P1 and P3. First, P1 describes isolated systems
that are dominated by pre-existent probability. Any role that we can have here is strictly passive,
as we cannot open these systems or interact with them directly. Not even observe them. This
corresponds to a mode of being.

Lastly, in P3 there is a sense of agency, because it speci�cally relates to open systems, which can
interact, synchronize, be controlled, feed-back, and feed-forward to themselves, and perhaps be less
in�uenced by the shadow of the omniscient intelligence, which is only �nite here. Therefore, the
most appropriate mode of consciousness here may be participation.

We therefore summarize the three modes of reality according to the roles that Consciousness may
be having in each:

P1. Being.

P2. Observation.

P3. Participation.

Once again, the three modes are mutually exclusive, although it would not be incorrect to say that
reality can be all three together and that they do not contradict one another. Nevertheless, this
formulation relates to us as conscious agents much more intuitively than previous formulations of
the theorem, so the mutual exclusivity at any given moment is perhaps easier to accept in this
case. Moreover, the distinction between the three modes creates an opening for free will to enter the
experience of reality via P3�something which has been notoriously di�cult to conciliate with the
scienti�c and philosophical views that subscribe either to random indeterminism (P1) or complete
determinism (P2), even when it verges on chaos that only appears indeterministic (Sapolsky, 2023).

B.4 God, consciousness, and free will

P3 was associated above with �nite intelligence as well as with participation, this mode may provide
a resolution for the �foreknowledge problem� of an omniscient God that does not seem to allow for
free will to exist (attributed to Boethius; Pike, 1965; Hunt and Zagzebski, 2022). Omniscience only
shows in P1 and P2, but not in P3, where participation is key. Inasmuch as participation calls�
and Reality enables�for even a limited amount of free will, then it is not in violation of God's
omniscience. This appears to be a corollary of the mutual exclusivity of the three modes of Reality
elucidated in this work.

We shall follow suit in our �nal foray into the realm of metaphysics and juxtapose the last two
formulations pertaining to God and to Consciousness, in order to obtain a clearer handle on their
interrelationship as was done for P3. This �nal reformulation of Theorem 1 is provided without
argumentation and with no further interpretation.

P1. God the Creator of Time ⇔ Consciousness is.

P2. God the Product of Time ⇔ Consciousness observes.

P3. God the Subject of Time ⇔ Consciousness participates.
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